

Volume XX, Nomor XX, Tahun XXXX

EVALUASI SISTEM KESELAMATAN DAN KESEHATAN KERJA K3 PADA STASIUN STERILIZER MENGGUNAKAN METODE HIRARC

Raziiza Narandreswara ¹, Priyambada ², L Pandu Pamardi ³ Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian INSTIPER Yogyakarta

Email Korespondensi: raziiza13436@gmail.com

ABSTRAK (Arial, 12 pt Bold)

Penelitian ini dilakukan untuk menganalisis kecelakaan kerja di stasiun sterilizer menggunakan metode HIRARC (Hazard Identification Risk Assesment and Risk Control). Analisis bahaya keselamatan kerja dengan metode HIRARC memiliki 3 tahapan yaitu : identifikasi bahaya (hazard identification), penilaian risiko (risk assessment) dan pengendalian risiko (risk control). Stasiun sterilizer merupakan tempat atau area proses perebusan TBS. Dari hasil analisa HIRARC terdapat potensi bahaya seperti : pada proses perebusan TBS berlangsung timbul kebocoran pada sterilizer dan safety valve tidak berfungsi dengan normal, menyebabkan karyawan terpental dan ledakan, proses membuka pintu sterilizer setelah selesai perebusan, menyebabkan luka bakar atau kulit melepuh. Oleh karena itu setiap karyawan pada proses itu harus mempunyai kepekaan mengenai critical point khususnya pada pada proses perebusan TBS berlangsung timbul kebocoran pada sterilizer dan safety valve tidak berfungsi dengan normal dan proses membuka pintu sterilizer setelah selesai perebusan. Dan harus menaati SOP dalam menggunakan APD serta menjaga kebersihan di area sterilizer.

Kata kunci: K3, HIRARC, Stasiun Sterilizer

PENDAHULUAN

Sistem manajemen K3 adalah bagian dari sistem manajemen secara keseluruhan yang meliputi: Struktur organisasi, pelaksanaan, prosedur, tanggung jawab, proses dan sumber daya. SMK3 sangat dibutuhkan bagi pengembangan, penerapan, pencapaian, pengkajian dan pemeliharaan kebijakan keselematan dan kesehatan kerja, dalam rangka pengendalian risiko yang berkaitan dengan kegiatan kerja guna terciptanya tempat kerja yang aman, efisien dan produktif. Namun fakta dilapangan masih ditemukan beberapa kejadian kecelakaan kerja pada stasiun sterilizer. Berdasarkan kejadian tersebut maka perlu dilakukan analisis mengenai risiko kecelakaan kerja yang mungkin akan terjadi kembali di pabrik kelapa sawit. Mengingat kecelakaan kerja terakhir yang terjadi disana sekitar 2 tahun yang lalu dan kecelakaan kerja tersebut terjadi di stasiun sterilizer. Oleh karena itu perlu dilakukan identifikasi, tingkat analisis risiko yang mungkin dapat terjadi di kemudian hari. Berdasarkan kejadian tersebut maka dipilih metode HIRARC sebagai alat untuk melakukan identifikasi bahaya, tingkat risiko dan tindakan pengamanannya, pemilihan metode

HIRARC karena metode ini dapat berperan dalam proses identifikasi, penilaian serta pengendalian risiko bahaya yang berpotensi terjadi pada aktivitas kerja di pabrik kelapa sawit. Metode ini menunjukkan ke perusahaan, untuk melihat seberapa besar potensi terjadinya bahaya dan tingkat keparahan jika bahaya itu terjadi.

METODE PENELITIAN

Tempat dan Waktu Penelitian

Penelitian ini akan dilaksanakan pada bulan Oktober 2022 dan dilakukan pada saat kegiatan Magang di PT. Surya Agrolika Reksa Kec. Singingi Hilir, Kab Kuantan Singingi, Provinsi Riau.

Tahapan Penelitian

- 1. Menentukan jenis kegiatan kerja.
- 2. Mengidentifikasi sumber bahayanya sehingga di dapatkan risikonya.
- 3. Penilaian risiko dan Pengendalian risiko.

Parameter yang diamati

- 1. Standar Operasional Kerja Keselamatan dan Kesehatan Kerja (SOP K3).
- 2. Program-program Panitia Pembina Keselamatan dan Kesehatan Kerja (P2K3).
- 3. Daftar potensi bahaya.
- 4. Kesesuaian penggunaan Alat Pelindung Diri (APD).
- 5. Data insiden kecelakaan kerja dan penyakit akibat kerja.

HASIL DAN PEMBAHASAN

Implementasi program K3

Komitmen dan kebijakan Keselamatan dan Kesehatan Kerja diwujudkan dalam bentuk kebijakan tertulis jelas dan mudah dimengerti serta diketahui oleh seluruh pekerja (dapat dilihat pada lampiran nomor 2).

Adanya P2K3 di perusahaan sangat membantu dalam menjalankan program K3 karena P2K3 membuat program seperti memberikan sosialisasi mengenai K3, memberikan APD kepada karyawan sesuai dengan kebutuhannya masing-masing dan melakukan pengawasan secara langsung agar penerapan K3 di lingkungan kerja dapat terwujud.

Kebijakan Keselamatan dan Kesehatan Kerja di perusahaan diwujudkan dalam bentuk wadah K3 atau P2K3 dalam struktur perusahaan seperti :

Standar Operasional Prosedur (SOP)

SOP di pabrik terkait pelaksanaan K3 adalah sebagai berikut :

- 1.Setiap orang yang memasuki pabrik harus menggunakan APD (helm dan sepatu).
- 2.Setiap karyawan pada saat bekerja harus menggunakan APD yang telah disediakan tanpa terkecuali.
- 3. Setiap unit kerja membuat identifikasi dan evaluasi potensi darurat dengan mengisi formulir identifikasi dan evaluasi potensi darurat daftar potensi tinggi.
- 4.Setiap unit bertanggung jawab untuk mencegah terjadinya keadaan darurat dengan selalu memperhatikan dan melakukan prosedur intruksi kerja dengan sebaik-baiknya.
- 5.Tim respon tanggap darurat bertanggung jawab dalam mengidentifikasi kebutuhan, memeriksa, mengevaluasi, dan memelihara peralatan perlindungan personil secara berkala agar alat tersebut dapat digunakan pada saat dibutuhkan.
- 6.Setiap unit bertanggung jawab untuk mencegah terjadinya keadaan darurat seperti kebakaran dengan selalu memperhatikan dan melaksanakan prosedur intruksi kerja penanggulangan dan pencegahan kebakaran dengan sebaik-baiknya.

Standar Operasional Prosedur (SOP) penggunaan Alat Pelindung Diri (APD) di pabrik kelapa sawit :

- 1. Penentuan APD
- Penentuan APD disetiap lokasi kerja dilakukan dengan cara mengidentifikasi bahaya analisis risiko berdasarkan setiap pekerjaan.
- Berdasarkan rekomendasi ahli K3.
- Masukan dari karyawan yang kemudian dilakukan analisis risiko.
- 2. Pengadaan untuk APD
- Perusahaan menyediakan semua jenis APD yang dibutuhkan oleh karyawan yang sesuai dengan risiko bahayanya.
- APD diberikan kepada pekerja/staff baru yang menempati lokasi yang memiliki risiko bahaya yang sudah di identifikasikan melalui analisis risiko dan wajib menggunakan APD.

Program-program yang dilakukan untuk K3

Program-program untuk mengoptimalkan K3 di pabrik antara lain :

1. Briefing harian

Sebelum mengawali kerja dilaksanakan briefing pagi yang di pimpin oleh asisten dan mandor dan pekerja sebagai peserta, akan diberikan motivasi dan diberi himbauan agar selalu safety dalam bekerja dan mengevaluasi hasil kerja karyawan.

2. Pemberian extra fooding

Pemberian extra fooding atau pemberian makanan tambahan berupa makanan ringan namun bergizi tinggi dilakukan setiap karyawan lembur, dengan memberi 1 kaleng susu dan 2 bungkus roti untuk satu karyawan.

3. Fasilitas kesehatan

Fasilitas yang disediakan oleh perusahaan seperti :

- Kartu jaminan kesehatan pekerja seperti BPJS.
- Kotak dan tas P3K
- Ketika terjadi kecelakaan kerja semua biaya pengobatan di tanggung perusahaan.

Dan sudah dilakukan tindakan contohnya seperti pemasangan rambu-rambu peringatan potensi bahaya (dapat dilihat pada lampiran nomor 6), dilakukan pelatihan tentang bagaimana cara menanggulangi jika ada kebakaran (dapat dilihat pada lampiran nomor 7). Namun perlu dilakukan pengawasan secera berkala oleh pihak pengawas karena terkadang masih ada karyawan yang tidak menggunakan APD saat bekerja. Hal ini dikarenakan para pekerja yang kurang menerapkan kesehatan dan keselamatan kerja pada dirinya sendiri padahal perusahaan sudah menyediakan peralatan APD (Alat Pelindung Diri) untuk para pekerja. HIRARC adalah salah satu alat/ tools untuk menganalisa potensi bahaya yang tujuannya untuk membantu mengidentifikasi setiap proses yang mengandung risiko bahaya dan membantu membuat solusinya untuk meminimalisir terjadinya kecelakaan kerja.

Tabel 1. Program Kerja

	· · · · · · · · · · · · · · · · · · ·	,
No	Program Kerja	Implementasi
1	Meningkatkan Sumber Daya Manusia di	Training pada setiap
	bidang Keselamatan dan Kesehatan Kerja.	karyawan tentang
		K3 khususnya pada
		karyawan baru.
		2. Ada pelatihan
		tanggap darurat,
		memadamkan
		kebakaran.
2	Melakukan pembinaan Keselamatan dan	Melakukan training kepada
	Kesehatan Kerja bagi Manajemen dan	seluruh karyawan.
	Tenaga Kerja untuk meningkatkan	
	pengetahuan dan kesadaran terhadap K3.	
3	Mengidentifikasi dan mengendalikan	Melakukan identifikasi
	semua potensi bahaya serta dampak	untuk setiap proses di

	lingkungan yang terjadi pada seluruh	pabrik yang memiliki
	aktivitas operasional Perusahaan.	potensi bahaya dalam
		bekerja. Sehingga setiap
		karyawan sudah
		mengetahui bahaya yang
		bisa terjadi.
4	Berperan aktif untuk memenuhi semua	Non attached
	peraturan perundangan dan persyaratan	
	lain yang berkaitan dengan K3.	
5	Memberikan hukuman (<i>Punishment</i>)	Non attach
	terhadap Afd/mandor/asisten yang tingkat	
	kecelakaannya tinggi serta pelaksanaan	
	K3 yang kurang aktif.	
6	Memberikan sanksi/ hukuman	Non attach
	(<i>Punishment</i>) kepada karyawan yang tidak	
	patuh terhadap penerapan K3	
7	diperusahaan.	Downsohoon andah
7	Membentuk organisasi/unit khusus untuk	Perusahaan sudah
	melaksanakan penerapan K3 secara	membuat organisasi khusus untuk
	sistematis, efektif dan berkelanjutan.	
		melaksanakan program K3.
8	Meningkatkan kualitas, kuantitas, sarana	Perusahaan memberikan
	dan prasarana serta kompetensi seluruh	APD kepada karyawan,
	karyawan melalui pelaksanaan pelatihan,	melakukan pelatihan
	menumbuh kembangkan budaya mutu,	tanggap darurat,
	lingkungan dan K3.	memberikan rambu-rambu
		potensi bahaya pada
		setiap proses serta
		mengingatkan agar selalu
		safety dalam bekerja.
9	Memberikan penghargaan (Reward)	Non attach
	terhadap afd Kebun/ stasiun PMKS yang	
	tingkat kecelakaannya rendah (Zero	
	Accident) dan pelaksanaan K3 yang	
	berjalan aktif.	
10	Mereview serta berperan aktif melakukan	Non attach
	perbaikan berkelanjutan demi terciptanya	
	K3 serta lingkungan kerja yang sehat	
4.1	diwilayah perusahaan.	AI (
11	Melakukan Pemantauan dan evaluasi	Non attach
	kinerja K3 persemester maupun tahunan.	

Analisa metode HIRARC

Keuntungan menggunakan metode HIRARC yaitu tahapannya mudah dipahami dan sesuai dengan kebutuhan yang ada di perusahaan sehingga bisa diterapkan.

Identifikasi Bahaya (Hazard Identification)

Berikut ini adalah hasil pengamatan di PT XY khususnya di stasiun sterilizer saat kegiatan kerja. Identifikasi ini dilakukan dengan cara pengamatan langsung pada setiap kegiatan yang mempunyai risiko bahaya. Dapat dilihat pada tabel 2 berikut ini.

Tabel 2. Identifikasi Bahaya pada Setiap Proses

No	Tahapan Proses	n Proses Identifikasi Risiko					
	Pekerjaan	Bahaya					
	<u> </u>						
	Pembersihan lantai pada area <i>sterilizer</i> .	Ada bocoran dari lubang lori yang	Karyawan terpeleset.				
1.		menyebabkan timbul tetesan air					
		setelah proses					
		perebusan.					
	Penarikan lori	Kabel sling yang	Karyawan terluka				
2.	menggunakan	berisiko putus	dan terpental.				
	capstan.	mengenai karyawan.					
		•					
	Penambahan dan pengeluaran steam	Timbul kebisingan akibat suara yang	Karyawan terganggu				
3.	pada peak 1, peak 2	tinggi dari proses	pendengarannya.				
	dan peak 3 pada proses perebusan.	penambahan dan pengeluaran steam.					
	proces perocacam	pongoraaran otoanii					
		Timbul kebocoran					
	Saat proses	pada sterilizer dan	karyawan				
4.	perebusan TBS	safety valve tidak	terpental dan				
	berlangsung.	berfungsi dengan normal.	ledakan.				
	Membuka pintu	Terkena uap panas	Karyawan luka				
5.	sterilizer setelah	pada saat membuka	bakar atau kulit				
	selesai perebusan.	melepuh.					

Penilaian Risiko (Risk Assesment)

Penilaian risiko memiliki tujuan untuk mengidentifikasi nilai potensi risiko (*risk level*) kecelakaan kerja. Penentuan tingkat risiko dapat berdasarkan dari kemungkinan kejadian (*likehood*) dan keparahan yang ditimbulkan (*consequens*). Hasil dari penilaian risiko (risk assesment) dapat dilihat pada tabel 3 berikut ini.

Tabel 3. Hasil Penilaian Risiko

No	Proses	Identifikasi Bahaya	Risiko	L	С	S	Riks Level
1	Pembersihan lantai pada area sterilizer.	Ada bocoran dari lubang lori yang menyebabkan timbul tetesan air setelah proses perebusan.	Menyebabkan karyawan terpeleset.	4	1	4	Low
2	Penarikan lori menggunakan capstan.	Kabel sling yang berisiko putus mengenai karyawan.	Menyebabkan karyawan terluka dan terpental.	3	2	6	Medium
3	Penambahan dan pengeluaran steam pada peak 1, peak 2 dan peak 3 pada proses perebusan.	penambahan dan pengeluaran	Menyebabkan karyawan terganggu pendengarannya.	3	2	6	Medium
4	Saat proses perebusan TBS berlangsung.	•	1	3	5	15	High
5	Membuka pintu sterilizer setelah selesai proses perebusan.		Menyebabkan karyawan luka bakar atau kulit melepuh.	3	4	12	High

Keterangan:

L = Likelihood (Kemungkinan Terjadi)

C = Consequens (Keparahan yang ditimbulkan)

S = Skor (Total hasil perkalian L dan C)

Risk Level = Tingkat risiko yang ditimbulkan berdasarkan hasil dari total skor mengacu pada *risk matrix*

Pengendalian Risiko (Risk Control)

Pengendalian risiko dilakukan terhadap seluruh bahaya yang ditemukan dalam proses identifikasi bahaya dan mempertimbangkan peringkat risiko untuk menentukan prioritas dan bagaimana cara pengendaliannya. Setiap pekerjaan tentu memiliki beberapa risiko yang mungkin bisa terjadi. Kecelakaan kerja di pabrik kelapa sawit sendiri dapat dikategorikan dalam empat tipe atau tingkat antara lain kategori rendah (*low risk*), sedang (*medium risk*), tinggi (*high risk*), dan sangat tinggi (*extreme*). Berdasarkan dari hasil analisis maka penilaian *risk level* di stasiun sterilizer di PT XY hanya ada di tiga kategori rendah (*low risk*), sedang (*medium risk*), dan tinggi (*high risk*) dapat dilihat pada tabel 4 berikut ini.

Tabel 4. Pengendalian Risiko

No	Proses	Identifikasi	Risiko	L	С	S	Riks	Risk
		Bahaya					Level	Control
1	Pembersihan	Ada bocoran	Menyebabkan	4	1	4	Low	Pencegahan dengan
	lantai pada	dari lubang lori	karyawan					menggunakan sepatu
	area sterilizer.	yang	terpeleset.					safety yang masih
		menyebabkan						prima anti slipnya dan
		timbul tetesan						rutin membersihkan
		air setelah						area sterilizer.
		proses						
		perebusan.						
2	Penarikan lori	Kabel sling	Menyebabkan	3	2	6	Medium	Pencegahan dengan
	menggunakan	yang berisiko	karyawan terluka					menggunakan kabel
	capstan.	putus mengenai	dan terpental.					sling yang masih baru
		karyawan.						dan rutin melakukan
								pengecekan kabel sling
								sebelum digunakan.
3	Penambahan	Timbul		3	2	6	Medium	Pencegahan dengan
	dan	kebisingan	Menyebabkan					menggunakan APD,
	pengeluaran	akibat suara	karyawan					yakni <i>ear plug</i> untuk
	steam pada	yang tinggi dari	terganggu					melindungi telinga.
	peak 1, peak 2	proses	pendengarannya.					
	dan peak 3	penambahan						
	pada proses	dan						
	perebusan.	pengeluaran						
		steam.						

4	Saat proses	Timbul	Menyebabkan	3	5	15	High	Melakukan
	perebusan TBS	kebocoran pada	karyawan terpental					pengontrolan rutin dan
	berlangsung.	sterilizer dan	dan ledakan.					memastikan tidak ada
		safety valve						kebocoran pada
		tidak berfungsi						sterilizer dan
		dengan normal.						memastikan fungsi
								safety valve dalam
								keadaan normal.
5	Membuka pintu	Terkena uap	Menyebabkan	3	4	12	High	Pencegahan dengan
	sterilizer	panas pada	karyawan luka					menggunakan sarung
	setelah selesai	saat membuka	bakar atau kulit					tangan dan harus
	proses	pintu sterilizer.	melepuh.					memastikan uap panas
	perebusan.							sudah terbuang
				· · · · · · · · · · · · · · · · · · ·				sebelum membuka
								pintu.

Penjelasan Tabel 4. adalah sebagai berikut :

Pada proses pertama yaitu pembersihan lantai pada area sterilizer, bahaya yang teridentifikasi adalah ada bocoran dari lubang lori yang menyebabkan timbul tetesan air setelah proses perebusan. Hal tersebut dapat menyebabkan karyawan terpleset, dapat dicegah dengan cara menggunakan sepatu safety yang masih prima anti selipnya dan rutin membersihkan area sterilizer.

Proses kedua penarikan lori menggunakan capstan, bahaya yang teridentifikasi adalah kabel sling yang berisiko putus mengenai karyawan. Hal tersebut dapat menyebabkan karyawan terluka dan terpental, dapat dicegah dengan cara penggunaan kabel sling yang masih baru dan rutin melakukan pengecekan kabel sling sebelum digunakan.

Proses ketiga penambahan dan pengeluaran steam pada peak 1, peak 2 dan peak 3 pada proses perebusan, bahaya yang teridentifikasi adalah timbul kebisingan akibat suara yang tinggi dari proses penambahan dan pengeluaran steam. Hal tersebut dapat mengakibatkan karyawan terganggu pendengarannya, dapat dicegah dengan cara menggunakan *ear plug* untuk melindungi telinga.

Proses keempat saat proses perebusan berlangsung, bahaya yang teridentifikasi adalah timbul kebocoran pada sterilizer dan safety valve tidak berfungsi dengan normal. Hal tersebut dapat menyebabkan karyawan terpental dan ledakan, dapat dicegah dengan cara melakukan pengontrolan rutin dan memastikan tidak ada kebocoran pada sterilizer dan memastikan fungsi safety valve dalam keadaan normal.

Proses kelima membuka pintu sterilizer setelah proses perebusan, bahaya yang teridentifikasi adalah terkena uap panas ketika membuka pintu sterilizer. Hal tersebut dapat menyebabkan karyawan luka bakar atau kulit melepuh, dapat dicegah dengan cara menggunakan sarung tangan dan harus memastikan uap panas sudah terbuang sebelum membuka pintu.

DAFTAR PUSTAKA

Agustina, N. L. (2018). IDENTIFIKASI BAHAYA DAN PENILAIAN RESIKO KESELAMATAN DAN KESEHATAN KERJA (K3) DENGAN MENGGUNAKAN METODE HAZARD IDENTIFICATION AND RISK ASSESSMENT (HIRA)(STUDI KASUS PADA BENGKEL LAS RAPI) (Doctoral dissertation, University of Muhammadiyah Malang).

Anugerah, A. (2017). Implementasi Job Safety Analysis (JSA) pada Kegiatan Finishing di Industri Mebel Kec. Somba Opu, Kab. Gowa 2017 (Doctoral dissertation, Universitas Islam Negeri Alauddin Makassar).

- Astari, M. L. M., & Suidarma, I. M. (2022). Implementasi Sistem Manajemen Kesehatan dan Keselamatan Kerja (SMK3) pada PT ANTAM Tbk. *Jurnal Penelitian Manajemen Terapan (PENATARAN)*, 7(1), 24-33.
- Choiriyah, S., Harianto, F., & Henggar, D. (2020). Analisis Tingkat Implmentasi SMK3 pada Konstruksi Bangunan di Surabaya berdasarkan PP No 50 Tahun 2012. *PADURAKSA: Jurnal Teknik Sipil Universitas Warmadewa*, *9*(1), 73-79.
- Herlinawati, H., & Zulfikar, A. S. (2017). Analisis Penerapan Sistem Manajemen Keselamatan dan Kesehatan Kerja (SMK3). *Jurnal Kesehatan*, 8(1), 895-906.
- Ihsan, T., Edwin, T., & Irawan, R. O. (2016). Analisis risiko k3 dengan metode hirarc pada area produksi pt cahaya murni andalas permai. *Jurnal Kesehatan Masyarakat Andalas*, 10(2), 179-185.
- Ihsan, T., Silvia, S., Derosya, V., Edwin, T., & Dewi, M. S. (2021). PENILAIAN RISIKO TERHADAP POSTUR KERJA PADA PEKERJA PABRIK KARET INDONESIA. J@ ti Undip: Jurnal Teknik Industri, 16(2), 116-122.
- Larasati, N., Chasanah, S., Machmudah, S., & Winardi, S. (2016). Studi analisa ekonomi pabrik cpo (crude palm oil) dan pko (palm kernel oil) dari buah kelapa sawit. *Jurnal Teknik ITS*, *5*(2), F212-F215.
- Nur, M. (2021). Analisis tingkat risiko kesehatan dan keselamatan kerja (K3) dengan menggunakan metode HIRARC di PT. XYZ. *Jurnal Teknik Industri Terintegrasi*, *4*(1), 15-20.
- Ramadhan, F. (2017, November). Analisis Kesehatan dan Keselamatan Kerja (K3) Menggunakan Hazard Identification Risk Assessment and Risk Control (HIRARC). In *Prosiding Seminar Nasional Riset Terapan* SENASSET (pp. 164-169).
- Ramadhan, F. (2017, November). Analisis Kesehatan dan Keselamatan Kerja (K3) Menggunakan Hazard Identification Risk Assessment and Risk Control (HIRARC). In *Prosiding Seminar Nasional Riset Terapan* SENASSET (pp. 164-169).
- Saputra, O. (2022). Analisis Potensi Bahaya di Area Produksi Kelapa Sawit Menggunakan Metode HIRARC di PT. Beurata Subur Persada (Doctoral dissertation, UPT PERPUSTAKAAN).
- Soputan, G. E., Sompie, B. F., & Mandagi, R. J. (2014). Manajemen Risiko Kesehatan dan Keselamatan Kerja (K3)(Study Kasus Pada Pembangunan Gedung SMA Eben Haezar). *Jurnal Ilmiah Media Engineering*, *4*(4).
- Wijaya, A., Panjaitan, T. W., & Palit, H. C. (2015). Evaluasi Kesehatan dan Keselamatan Kerja dengan Metode HIRARC pada PT. Charoen Pokphand Indonesia. *Jurnal titra*, *3*(1), 29-34.