MODIFIKASI JARAK KISI – KISI KERNEL GREDING DRUM DALAM MENGURANGI KADAR KOTORAN PADA KERNEL

Julian Nasib¹, Hermantoro², Nuraeni Dwi Dharmawati³

¹Mahasiswa, Fakultas Teknologi, INSTIPER

²Dosen Fakultas Teknologi INSTIPER Ida Bagus Banyuro Partha

ABSTRAK

Penelitian ini bertujuan untuk mengetahui : Menyesuaikan jarak kisi – kisi kernel greding drum berdasarkan hasil analisa kernel histogram. Nut greding drum merupakan proses dan pemisahan inti kelapa sawit termasuk pemisahan benih, pengeringan benih, pemisahan benih, pemisahan kernel, pengupasan pengeringan. Pemisahan biji bertujuan untuk mendapatkan efesiensi pemisahan partikel yang optimal berkat alat dengan ukuran tertentu. PT, Kapuas Indoplam Industri memiliki kisi – kisi kernel grading drum dengan ukuran 17 milimeter yang mana dengan ukuran yang dimiliki menghasilkan kadar kotoran yang terikut sebanyak 7 persen. Terikutnya kadar kotoran yang banyak membuat proses yang tidak maksimal dan membuat perusahaan mengalami kerugian. Maka penelitian ini bertujuan melakukan modifikasi kisi – kisi kernel greding drum dari 17 milimeter menjadi 15 milimeter yang mana meliputi beberapa parameter yang diamati : kisi – kisi kernel greding drum, diameter rata – rata kernel, dan hasil analisis kernel produksi. Jarak kisi – kisi yang dimodifikasi dengan mengubah 17 milimeter menjadi 15 milimeter mendapatkan diameter rata – rata sebanyak 6 persen dan menghasilkan kadar kotoran yang berupa nut bulat memiliki rata – rata yang terikut 0,24 persen dan nut pecah yang terikut 1,4 persen. Dari hasil tersebut makan perubahan kisi – kisi kernel greding drum dari 17 milimeter menjadi 15 milimeter dapat menurunkan kadar kotoran di PT, Kapuasindo Plam Industri menjadi 6 persen dari sebelumnya dengan kadar kotoran sebesar 7 persen.

Kata Kunci : Kernel Grading Drum Dan Kernel Produksi

PENDAHULUAN

A. Latar Belakang

kelapa kelapa sawit (Elaeis guinensis Jack) bukanlah tanaman berasal dari Indonesia, tapi Nigeria, Afrika Barat. Namun, kelapa sawit cocok untuk ditanam di daerah tersebut asalnya Indonesia. Klasifikasi botani kelapa sawit adalah Devisio (Tracheophyta) Sub devisi (Pteropida) Kelas (Angiospermae) SubKelas (Monocotiledonae) Ordo (Palmales) Familia (Palmae) Sub Famili (Cocoidea) Genus

(Elaeis) Spesies (Elaeis guinensis) Varietas (Dura, Pesipera, Tenera) Pada tahun 1848 perkebunan kelapa sawit pertama diperkenalkan di Indonesia dari pemerintah kolonial Belanda. Kelapa sawit ini tidak dikembangkan secara komersil sampai tahun 1911 oleh Andrien Hallet seorang Belgia, yang belajar banyak tentang kelapa sawit di Afrika. Perkebunan kelapa sawit pertama terletak di pantai timur Sumatra (Deli) DAN Aceh. (Djoehana Setyamidjaja, op.cit, 2006)

Pengolahan Kelapa Sawit

Adapun dalam proses pengolahan di pabrik kelapa sawit terdapat beberapa stasiun. Stasiun-stasiun di PKS antara lain, Stasiun penerimaan (*Reception station*), Stasiun penampungan (*Loading ramp station*), Stasiun penebahan (*Threshing station*), Stasiun pengempaan (*Press station*), Stasiun pemurnian (*Clarification station*), Stasiun pemisahan inti (*Nut and kernel station*)

Ruang mesin (*Engine room*), Stasiun Boiler (*Boiler station*), Stasiun pemurnian air (*Water treatment plant*) dan Bengkel (*Workshop*).

Stasion Nut Kernel

Stasiun *Nut* and *Kernel* merupakan stasiun yang berfungsi sebagai stasiun pengutipan kernel produksi (kernel extraction). Proses perlakuakn pada Stasiun ini berpengaruh terhadap kualitas kernel yang diproduksi. Dalam pengolahan kelapa sawit terdapat biji dan kelopak. Grain and seed station adalah proses pemisahan campuran pulp dan granul dari screw press dan diproses untuk menghasilkan cangkang dan serat untuk bahan bakar boiler dan inti sawit (kernel) sebagai produk siap jual. langsung untuk mendapatkan minyak inti sawit (PKO).

Depericarper

Serbuk tersebut kemudian diangkut ke Depericarper, kolom pemisah vertikal (Colonne de Vannage Verticale) dimana udara akan mengangkat serat (lebih ringan) dan menyebabkan partikel (lebih berat) jatuh ke dasar kolom pemisah (Vannage Column). dan dikirim ke Karton Poles. . Mur yang sudah dipoles (cleaned nut) kemudian diangkut melalui wet nut conveyor menuju destructor dimana kecepatan udara akan mengangkat nut (yang lebih ringan) sampai ke nut hopper sedangkan Batu dan potongan logam (lebih berat) jatuh ke tanah. Ini memastikan bahwa biji-bijian bebas dari batu dan besi tua, akan merusak penggiling riak (nutcracker). Butiran basah Grain Hopper akan dimuat dengan Air Lock, yaitu untuk kontrol umpan, di Ripple Mill.

Destoner

Mur yang sudah dipoles (cleaned nut) kemudian diangkut melalui wet nut conveyor menuju destructor dimana kecepatan udara akan mengangkat nut (yang lebih ringan) sampai ke nut hopper sedangkan batu dan potongan logam (lebih berat) jatuh ke tanah. Ini memastikan bahwa mur bebas dari batu dan serpihan logam, yang dapat merusak penggiling riak. Butiran basah Grain Hopper akan dimuat dengan Air Lock, yaitu untuk kontrol umpan, di Ripple Mill.

Ripple mill

Ripple mill adalah salah satu kacang yang biasa digunakan di pabrik

produksi minyak sawit. Proses pemisahan gabah dan inti sawit meliputi dua metode, yaitu metode pemisahan gabah dan serat serta metode perlakuan dan pemisahan inti sawit. Metode pemisahan biji dan serat. Metode yang digunakan untuk memisahkan biji dari serat kelapa sawit melibatkan penggunaan traksi atau hisap udara pada kolom pemisah yang terletak di cangkang. Biji kemudian dimasukkan ke dalam drum pembersih biji (bead polishing drum) untuk membersihkan sisa-sisa serat yang masih menempel pada biji. Biji-bijian yang bersih didorong oleh lengan pengocok ke ujung drum pemoles biji-bijian, dan kemudian diangkut oleh lift ke drum pemilah biji-bijian untuk dinilai sesuai dengan ukurannya.

Sistem Penyortiran Partikel

Metode pengolahan dan pemisahan inti sawit (IKS). Pengolahan dan pemisahan IKS meliputi pemisahan benih, pengeringan benih, pemisahan benih, pemisahan kernel dan cangkang, dan pengeringan kernel. 12 Sebelum dimasukkan ke dalam grain silo, benih yang sudah bersih dimasukkan ke dalam sortir bin untuk memisahkan benih yang kecil dari yang besar. Tujuan pemisahan butir adalah untuk mencapai efisiensi granulasi yang optimal karena penggiling sudah disiapkan untuk memecah partikel dengan ukuran tertentu. Pengeringan biji dilakukan di dalam grain silo dan bertujuan untuk menguapkan air yang ada pada biji sehingga daya lekat biji dan cangkang menjadi kurang. Benih yang telah dikeringkan di grain silo kemudian dibawa ke grain mill, yaitu royal biskuit. Partikel akan terpisah, melepaskan inti sawit di dalamnya. Fraksinasi king cracker yang dihasilkan berupa campuran kernel, cangkang dan pengotor halus kemudian diangkut oleh konveyor dan elevator ke separator.

Light Transport Dry Separating

Biji yang dihancurkan, termasuk kernel dan cangkang, sering disebut sebagai tumbuk. Campuran retak ini diangkut ke kolom pemisahan lain, yaitu LTDS 1 dan LTDS 2, di mana fragmen cangkang dipisahkan dari nukleus. Kemudian inti basah diumpankan ke lift inti basah dan kemudian ke silo pengeringan inti. Dimulai dengan LTDS 2, akan ada cangkang tebal yang diikat oleh biji pecah dan biji gandum kecil, yang kemudian dikirim ke Claybath. Ada dua

cara pemisahan biji dan cangkang, yaitu pemisahan kering dan pemisahan basah. Pemisahan kering dilakukan dalam kolom vertikal (LTDS atau Light Tenera Dust Separator). Gunakan exhaust fan dimana bagian yang lebih ringan akan tersedot, sedangkan bagian yang lebih berat akan jatuh. Proses pemisahan dilakukan dalam dua kolom separasi, LTDS 1 dan LTDS 2. Pemisahan basah dilakukan dengan penangas tanah liat dengan prinsip pemisahan berdasarkan perbedaan densitas antara inti dan cangkang dengan larutan kaolin. Inti yang dipisahkan dari cangkang ditempatkan dalam silo inti untuk mengurangi kadar air. Pengeringan ini bertujuan untuk menonaktifkan aktivitas mikroba untuk membatasi pembentukan kapang atau timbulnya asam selama penyimpanan inti. Kemudian inti diangkut oleh konveyor ke silo inti curah.

Claybath

Claybath adalah alat yang digunakan untuk memisahkan cangkang dari inti menggunakan air dan kalsium. Prinsip pengoperasian Claybath adalah pada saat pemisahan cangkang dari inti dilakukan dengan perbedaan massa jenis, dimana massa jenis cangkang adalah 1,15 gr/cm3 dan massa jenis inti adalah 0,8 gr./cm3. Proses tersebut dilakukan dengan menggunakan larutan kalsium karbonat (CaCo3) dengan berat 1,10 gr/cm3 yang dilarutkan dalam air dengan perbandingan 1 : 3. Dengan penggunaan larutan 'CaCo3, zat yang massa jenisnya lebih besar dari larutan kalsium karbonat akan tenggelam dan jatuh ke air. Ambil Shell Conveyor dan masukkan Shell Hopper untuk digunakan sebagai bahan bakar boiler, sedangkan larutan kalsium karbonat dengan berat jenis kurang akan mengapung dan jatuh ke Wet Core Conveyor. Biji-bijian basah/mengambang kemudian dibawa oleh elevator biji-bijian basah dan ke konveyor biji-bijian basah atas ke silo biji-bijian. Kalsium kualitas yang baik untuk digunakan adalah: 1. Warna putih 2. Tidak berbusa saat digunakan 3. Bau normal, Tidak berbau, Core silo (pengering inti).

Kernel silo

Kernel silo berfungsi sebagai penyimpanan sementara untuk kernel yang dibuat dengan mengeringkan kacang sebelum dipindahkan ke kernel storage silo. Tujuan pengeringan dalam grain silo adalah untuk menurunkan kadar air gabah

melalui pemanasan untuk mencapai standar kelembaban, dan sterilisasi gabah dari bakteri akan meningkatkan kadar FFA gabah. Kapasitas inti silo = 40 m³ (Pernando, 2019).

Kernel Greding Drum

Kernel grading drum merupakan salah satu alat yang terdapat pada kernel silo. Kernel silo berfungsi sebagai alat pemanas kernel produksi untuk mengurangi kadar air kernel. Kernel yang keluar dari kernel silo kemudian akan masuk ke kernel grading drum untuk dilakukan pemisahan antara kernel dengan nut utuh dan nut pecah. Kisi – kisi pada kernel grading drum diatur jaraknya agar kernel dapat melalui kisi – kisi dan nut utuh serta nut pecah akan keluar melalui ujung kernel grading drum. Nut utuh dan nut pecah yang sudah dipecahkan akan dikembalikan ke nut pholising drum. Kernel grading drum bekerja dengan cara memutar drum dengan putaran ± 20 rpm dimana drum terdapat kisi – kisi yang sudah diatur jaraknya dan terdapat plat pelempar untuk mendorong nut sama nut pecah keluar dari kernel drum.

Alat yang saya perbaiki terdapat pada bagian jarak kisi – kisi kernel greding drum dengan ukuran 15 mm.

Standart Mutu kernel

Parameter kualitas kernel berdasarkan SNI 01-0002-1, yaitu kadar air maksimum 8%, kadar kotoran maksimum 5-6 % Butir giling maksimum 15%

Pengotor inti dan kadar partikel pecah sebagai jumlah inti sawit yang diproduksi oleh Pabrik Kelapa Sawit (MCK). (Hasan Basri, 2019).

Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah kinerja dari kernel grading drum yang terpasang pada kernel silo yang menggantikan air lock kernel silo. Fungsi kernel grading drum untuk memisahkan kernel dengan nut utuh dan nut pecah. Permasalahan yang ada kinerja dari kernel grading drum masih terdapat kernel produksi yang masih banyak nut dan nut pecah yang terikut sehingga mengakibtkn lossis yang besar. Penelitian ini berfokus pada modifikasi kisi – kisi kernel greding drum dengan hasil histogram kernel sehingga dapat memisahkan nut utuh dan nut pecah dari kernel produksi.

Tujuan Penelitian

Penelitian ini dilakukan dengan tujuan:

- a. Menyesuaikan jarak kisi kisi kernel greding drum berdasarkan hasil analisa kernel histogram.
- b. Mengurangi kadar kotoran kernel produksi yang berasal dari nut utuh dan nut pecah.

Batasan masalah

a. Penelitian ini tidak mengkaji umur tanaman dari buah kelapa sawit.

Manfaat Penelitian

Penelitian ini dapat membantu menyempurnakan kinerja dari kernel greding drum dengan cara menyesuaikan jarak kisi – kisi berdasarkan kernel histogram. Sehingga modifikasi perubahan jarak kisi - kisi dapat menyempurnakan kinerja kernel greding drum dan memperoleh kualitas hasil kernel produksi sesuai dengan standart.

METODE PENELITIAN

A. Tempat dan Waktu Penelitian

Penelitian dilakukan di PT Kapuasindo Palm Industry (KPI), Provinsi Kalimantan Barat. Penelitian ini dimulai dari pengamatan hasil histogram kernel untuk menentukan jarak kisi – kisi kernel grading drum. Setelah diperoleh merata – rata diameter kernel dari percobaan histogram, maka dilakukan modifikasi penyesuaian kisi – kisi kernel grading drum. Setelah dilakukan modifikasi maka dilakukan pengambilan sample kernel produksi dari kernel grading drum yang sudah dimodifikasi dan kernel grading drum sebelum dimodifikasi. Waktu pelaksanaan penelitian dilakukan selama proses magang berlangsung yaitu terhitung sejak 02 Juni 2021 sampai 30 Juni 2021.

B. Prosedur Penelitian

A. Identifikasi Alat

Penelitian ini dimulai dari pengamatan hasil percobaan nut histogram. Kemudian melakukan modifikasi kisi – kisi kernel grading drum dan kualitas kernel produksi yang berfokus pada kadar kotoran

1. Indentifikasi alat

Alat ini berfungsi memisahkan kadar kotoran kernel produksi berupa Nut utuh dan Nut pecah yang lolos dari ripple mill.

2. Mengamati hasil histogram

Mengamati hasil percobaan kernel histogram selama satu bulan terakhir kemudian mencari rata – rata diameter kernel yang dominan.

3. Melakukan modifikasi kernel grading drum. Melakukan modifikasi kisi – kisi kernel grading drum yang disesuaikan dengan hasil kernel histogram (diameter rata – rata kernel)

4. Pengambilan sample

Pengambilan sample dilakukan pada keluaran kernel silo yang sudah dimodifikasi kisi-kisinya (15 mm) dan keluaran kernel silo yang kisi-kisinya belum dimodifikasi (17 mm), sample diambil rutin setiap 2 jam sekali pada pengolahan.

5. Analisa sample

Analisa sample dilakukan sesuai prosedur analisa kadar kotoran kernel dengan menggabungkan sample (quarting sample) yang telah diambil rutin

setiap 2 jam.

B. Tahapan Penelitian

- 1. Melakukan pengamatan
 - a. Mengamati cara kerja kernel grading drum
 - b. Mengamati jarak kisi kisi kernel grading drum
 - c. Mengamati hasil percobaan histogram satu bulan terakhir
 - d. Mengambil rata rata diameter kernel yang dominan.
- 2. Melakukan modifikasi kernel grading drum menyesuaikan kisi kisi kernel grading drum sesuai dengan diameter rata rata diameter kernel
- 3. Pengolahan data hasil

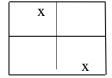
Mengolahan data hasil analisa kernel produksi pada kernel grading drum yang sudah dimodifikasi dibandingkan dengan kernel grading yang belum dimodifikasi

C. Parameter yang diamati

Parameter yang diamati antara lain:

- 1. Kisi kisi kernel grading drum
- 2. Diameter rata rata kernel (hasil histogram)
- 3. Hasil analisa kernel produksi (kadar kotoran yang berupa nut utuh dan nut pecah)
- D. Cara Pengukuran / Pengamatan Parameter
 - 1. Mengukur kisi kisi kernel grading drum.
 - Mengamati hasil histogram (mengambil rata rata kernel yang dominan
)
 - 3. Mengambil dan menganalisa kernel produksi dari kernel grading drum yang sudah dimodifaksi dan sebelum dimodifikasi sesuai dengan prosedur analiasa laboratorium.
- E. Metode Pengambilan Sample

Pengambilan sample untuk analisa kernel produksi:

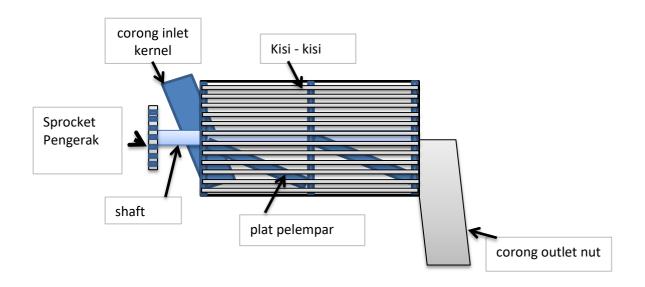

 Lokasi pengambilan sample kernel produksi pada kernel grading drum yang sudah dimodifikasi kisi – kisinya dan pada kernel grading drum yang belum dimodifikasi.

- 2. Sample diambil secukupnya ($\pm 1 \text{ kg}$) dengan menggunakan plastik sample.
- 3. Sample diambil setelah 2 jam operasi dengan pengambilan sample setiap 2 jam sekali.

F. Analisis Data

Sample yang telah diambil akan di quartering dengan metode sebagai berikut :

- 1. Sampel yang akan diquartering harus diaduk sesempurna mungkin secara manual.
- 2. Pisahkan ke dalam empat bagian yang sama dimana dua bagian yang berlawanan disingkirkan seperti ditunjukkan pada gambar berikut:


x = dibuang atau disingkirkan

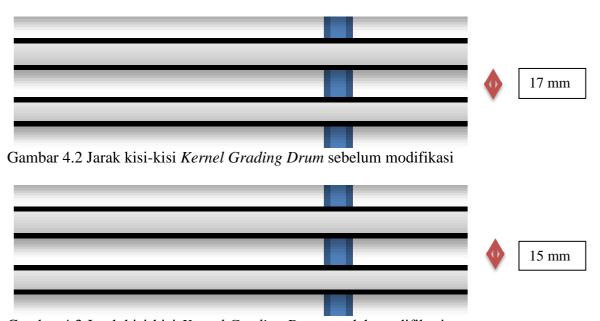
- 3. Dua bagian tersisa disatukan dan lakukan pengulangan prosedur seperti di atas dan lakukan berulang kali sampai diperoleh sub sampel 1 ± 0.2 kg.
- 4. Sampel akhir merupakan sampel yang homogen, kemudian tempatkan pada kantong plastik berlabel.

HASIL DAN PEMBAHASAN

A. Prinsip kerja kernel grading drum

Kernel grading drum merupakan salah satu alat yang terdapat pada $kernel\ silo$. Kernel silo berfungsi sebagai alat pemanas kernel produksi untuk mengurangi kadar air kernel. Kernel yang keluar dari kernel silo kemudian akan masuk ke kernel grading drum untuk dilakukan pemisahan antara kernel dengan nut utuh dan nut pecah. Kisi – kisi pada kernel grading drum diatur jaraknya agar kernel dapat melalui kisi – kisi dan nut utuh serta nut pecah akan keluar melalui ujung kernel grading drum. Nut utuh dan nut pecah yang sudah dipecahkan akan dikembalikan ke nut pholising drum. Kernel grading drum bekerja dengan cara memutar drum dengan putaran $\pm\ 20$ rpm dimana drum terdapat kisi – kisi yang sudah diatur jaraknya dan terdapat plat pelempar untuk mendorong nut sama nut pecah keluar dari kernel drum.

B. Studi kasus pada kernel grading drum


Kernel grading drum berfungsi untuk memisahkan kernel dengan nut utuh dan nut pecah. Dengan cara memutar drum dengan putaran \pm 20 rpm dimana drum terdapat kisi – kisi yang sudah diatur jaraknya dan terdapat plat pelempar untuk mendorong nut sama nut pecah keluar dari kernel drum. Di PT. Kapuasindo Palm Industry (KPI) pemisahan kernel dengan nut utuh dan nut pecah sudah bekerja dengan baik namun masih terdapat beberapa nut dan nut pecah yang masih terikut ke kernel produksi. Dalam penelitian ini berfokus pada modifikasi jarak kisi – kisi yang disesuaikan dengan ukuran diameter kernel rata – rata. Diameter rata – rata kernel diperoleh dari hasil histogram kernel dilaboratorium

Tabel 4.1 hasil percobaan Histogram Nut dan Kernel

	TABEL NUT DAN KERNEL												
Tanggal : 04-05-2021													
No	Diameter	NUT				KERNEL DARI NUT				KERNEL			
		Jumlah	% Jumlah	Berat	% Berat	Jumlah	% Jumlah	Berat	% Berat	Jumlah	% Jumlah	Berat	% Berat
1	5	0	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
2	6	0	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
3	7	0	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
4	8	0	0.00	0.00	0.00	0	0.00	0.00	0.00	4	1.04	1.04	0.24
5	9	3	0.81	2.13	0.27	3	0.78	1.06	0.25	55	14.32	34.97	8.20
6	10	15	4.04	16.81	2.16	15	3.91	8.63	2.02	116	30.21	111.84	26.23
7	11	39	10.51	54.62	7.03	40	10.42	31.96	7.49	97	25.26	117.35	27.52
8	12	30	8.09	45.58	5.86	31	8.07	24.61	5.77	32	8.33	41.32	9.69
9	13	166	44.74	325.67	41.89	168	43.75	183.61	43.05	76	19.79	112.75	26.44
10	14	41	11.05	101.27	13.03	41	10.68	55.18	12.94	4	1.04	7.19	1.69
11	15	53	14.29	143.90	18.51	55	14.32	79.88	18.73	0	0.00	0.00	0.00
12	16	4	1.08	11.08	1.43	5	1.30	5.97	1.40	0	0.00	0.00	0.00
13	17	14	3.77	50.74	6.53	17	4.43	24.11	5.65	0	0.00	0.00	0.00
14	18	2	0.54	6.29	0.81	2	0.52	3.54	0.83	0	0.00	0.00	0.00
15	19	3	0.81	12.65	1.63	6	1.56	6.16	1.44	0	0.00	0.00	0.00
16	20	1	0.27	6.72	0.86	1	0.26	1.75	0.41	0	0.00	0.00	0.00
	Total	371	100	777.46	100	384	100	426.46	100	384	100	426.46	100

Dari hasil percobaan histogram dapat di ketahui ukuran diameter nut dan diameter kernel yang diolah. Sehingga untuk memaksimalkal kinerja dari kernel grading drum perlu dilakukan penyesuaian kisi – kisi agar dapat menyaring nut utuh dan nut pecah secara maksimal dengan mempertimbangkan jumlah kernel yang terikut kembali ke pengolahan.

Kernel grading drum yang terpasang awalnya memiliki jarak kisi – kisi 17 mm dan mampu menyaring nut berukuran diatas 17 mm sebanyak 1,6 % dari sample histogram dan kernel yang terikut kembali ke pengolahan (diameter 17 mm keatas) sebanyak 2,3 %. Dalam penelitian ini dilakukan perubahan jarak kisi kisi pada salah satu kernel grading drum

Gambar 4.3 Jarak kisi-kisi Kernel Grading Drum setelah modifikasi

menjadi 15 mm, sehingga mampu menyaring nut berukuran diatas 15 mm sebanyak 6,47 % dari sample histogram dan kernel yang terikut kembali ke pengolahan (diameter 15 mm keatas) sebanyak 8,07 %.

Gambar 4.4 Modifikasi kisi-kisi Kernel Grading Drum setelah modifikasi

Hasil pengujian perbandingan efektifitas antara modifikasi kisis dengan ukuran 17 mm dengan ukuran 15 mm dapat dilihat dengan jelas di Tabel 4.2 dan Tabel 4.3. dari table tersebut dapat dikatakan efektifitas perubahan kisis 17 dengan 15 sangat terlihat jelas penururnnya. Hasil yang sudah dilakukan pengujian akan dibawa ke laboratorium dengan menggunakan analisi histogram. Analisis histogram digunakan untuk menganalisi variasi kernel yang keluar dari kernel greding drum dengan modifikasi yang telah dibuat yang mana dilakuakn seleksi antara ukuran kernel yang masuk pada ukuran histogram tersebut. Setelah melakukan seleksi histogram dilanjukan dengan menghitung kalkulasi cangkang dari nut bulat, cangkang dari nut pecah, cangkang utuh, dan kotoran yang terikut. Perhitungan tersebut dipaparkan di bawah ini;

%Cangkang dari nut bulat = 100 x (W2/W1)

=100 x (5,2 gram/1000 gram)

=0,52%

%Cangkang dari nut pecah = $100 \times (W3/W1)$

=100 x (23.0 gram / 1000 gram)

= 2,30 %

%Cangkang = $100 \times (W4/W1)$

= 100 x(3.3 gram / 1000 gram)

= 3,33 %

 $\%Dirt = 100 \times [(W2+W3+W4)/W1]$

= 100 x [(5,2 + 23,0 + 33,3)/1000]

$$= 100 \times 0.0615$$

= 6,15 %

Sedangkan untuk pehitungan hasil kisi – kisi 15mm antara lain sebagai berikut :

%Cangkang dari nut bulat = 100 x (W2/W1)

= 100 x (4,2 gram/1000 gram)

=0,42%

%Cangkang dari nut pecah = 100 x (W3/W1)

= 100 x (1,9 gram / 1000 gram)

= 1,93 %

%Cangkang = $100 \times (W4/W1)$

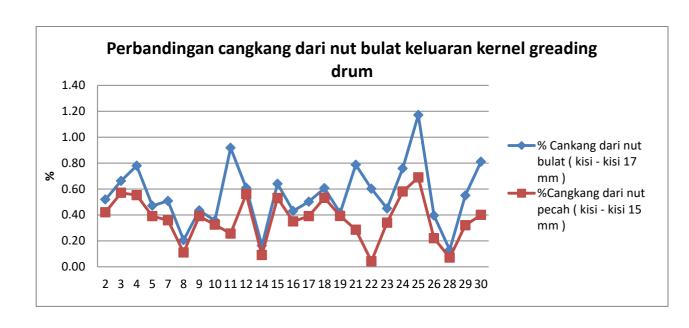
= 100 x(3.5 gram / 1000 gram)

= 3,55%

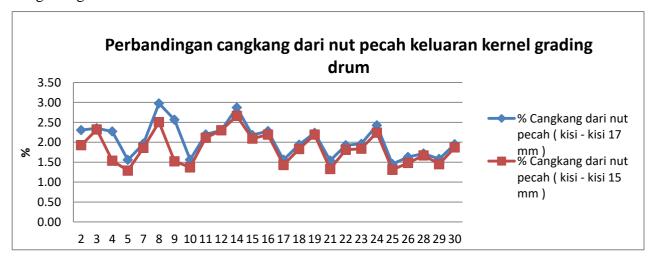
%Dirt = 100 x [(W2+W3+W4)/W1]

= 100 x [(4,2+1,93+3,55)/1000]

 $= 100 \times 0.059$


= 5,90 %

Tabel 4.2 hasil pengamatan kernel grading drum yang belum dimodifikasi


No	KERNEL GRADING DRUM (17 MM) SILO NO 1						
INO	% CKG DARI NB	% CKG DARI NP	% CANGKANG	DIRT			
1							
2	0.52	2.30	3.33	6.15			
3	0.66	2.35	1.53	4.54			
4	0.78	2.27	0.92	3.97			
5	0.47	1.56	1.72	3.75			
6							
7	0.51	1.97	2.25	4.72			
8	0.21	2.98	2.04	5.22			
9	0.43	2.56	2.78	5.78			
10	0.36	1.56	3.97	5.89			
11	0.92	2.20	3.32	6.43			
12	0.61	2.30	2.77	5.68			
13							
14	0.16	2.87	4.54	7.57			
15	0.64	2.18	3.94	6.76			
16	0.43	2.28	2.92	5.63			
17	0.50	1.56	4.54	6.60			
18	0.61	1.94	1.63	4.17			
19	0.42	2.24	2.73	5.38			
20							
21	0.79	1.54	2.31	4.64			
22	0.60	1.93	3.34	5.87			
23	0.45	1.96	1.82	4.23			
24	0.76	2.43	2.93	6.11			
25	1.17	1.45	2.57	5.19			
26	0.39	1.63	1.95	3.97			
27				0.00			
28	0.13	1.72	2.00	3.85			
29	0.55	1.58	2.55	4.68			
30	0.81	1.95	1.22	3.98			

Tabel 4.3 hasil pengamatan kernel grading drum yang sudah dimodifikasi

No	KERNEL GRADING DRUM (15 MM) SILO NO 2						
INO	% CKG DARI NB	% CKG DARI NP	% CANGKANG	DIRT			
1							
2	0.42	1.93	3.55	5.90			
3	0.57	2.32	1.45	4.34			
4	0.55	1.54	1.71	3.80			
5	0.39	1.29	1.99	3.67			
6							
7	0.36	1.86	2.33	4.55			
8	0.11	2.50	2.36	4.97			
9	0.39	1.52	3.69	5.60			
10	0.32	1.37	3.29	4.98			
11	0.26	2.11	3.75	6.12			
12	0.56	2.30	2.54	5.40			
13							
14	0.09	2.66	4.05	6.80			
15	0.53	2.09	3.98	6.60			
16	0.35	2.19	1.81	4.35			
17	0.39	1.43	3.41	5.23			
18	0.53	1.83	1.24	3.60			
19	0.39	2.19	2.22	4.80			
20							
21	0.29	1.33	2.50	4.12			
22	0.04	1.81	2.49	4.34			
23	0.34	1.84	1.69	3.87			
24	0.58	2.24	2.48	5.30			
25	0.69	1.31	2.26	4.26			
26	0.22	1.48	2.08	3.78			
27							
28	0.07	1.67	1.35	3.09			
29	0.32	1.45	2.80	4.57			
30	0.40	1.87	1.41	3.68			

Gambar 4.5 Grafik pebandingan cangkang dari nut bulat keluaran kernel grading drum

Gambar 4.6 Grafik pebandingan cangkang dari nut pecah keluaran kernel grading drum

Berdasarkan Gambar 4.5 dan 4.6 data pengamatan perbandingan kualitas kernel produksi keluaran dari kernel grading drum yang belum dimodifikasi (17 mm) dengan kernel grading drum yang sudah dimodifikasi (15 mm), terjadi penurunan

kadar kotoran kernel produksi yang berasal dari nut bulat dan nut pecah pada kisi – kisi kernel grading drum yang sudah dimodifikasi (15 mm) dibandingkan kernel grading drum yang belum dimodifikasi. Dari hasil tersebut menunjukkan bahwa semakin diperkecil jarak kisi – kisi kernel grading drum maka nut bulat dan nut pecah yang dapat dipisahkan semakin banyak. Sehingga kualiatas kernel produksi terutama pada kadar kotoran dikontrol dengan baik dikarenakan nut utuh dan nut pecah yang memiliki diameter > 15 mm dapat dipisahkan dari kernel produksi.

KESIMPULAN DAN SARAN

A. KESIMPULAN

Berdasarkan penelitian yang telah dilakukan diperoleh kesimpulan sebagai berikut :

- 1. Kernel grading drum dengan kisi kisi 15 mm (disusaikan dari hasil histogram kernel dan nut) lebih efektif mengurangi kadar kotoran dari cangkang nut bulat dibandingkan dengan kisi kisi 17 mm.
- 2. Kernel grading drum dengan kisi kisi 15 mm dapat mengurangi kadar kotoran dari cangkang nut pecah, nut bulat dibanding dengan kisi kisi 17 mm awal secara maksimal. Kernel greding drum 15 mm dari cangkang nut pecah, nut bulat sebesar 6 % dari kisi kisi sebelumnya dengan ukuran 17 mm di dapatkan nilai kadar kotoran sebesar 7 %.

B. SARAN

Dari pengamatan dan penelitian yang telah dilakukan, maka dirasakan perlu adanya saran-saran untuk penelitian selanjutnya yang berkaitan agar mendapatkan hasil yang lebih baik. Beberapa saran yang dapat diberikan antara lain:

- Untuk kernel grading drum yang belum dimodifikasi agar dapat di sesuaikan jarak kisi kisinya menjadi 15 mm. Dan selalu melihat hasil dari perubahan ukuran diameter kernel histogram.
- 2. Nut yang terpisah dari kernel grading drum agar segera dipindahkan atau diolah kembali melalui nut poshling drum.

DAFTAR PUSTAKA

Pernando.2019 *Stasiun Kernel* https://pernando413.blogspot.com/2019/08/stasiun-kernel.html

HasanBasri,2019journalhttps

://ejournal.unib.ac.id/index.php/agroindustri/article/download/9394/4981 Setyamidjaja, Djoehana. 2006. Kelapa Sawit. Yogyakarta: Kasinus.

MCMD, 2010. Standart Operational procedure: Process Control Revisi 4
Jakarta: PT. KARYA MAS ADI NUSANTARA.

MCMD, 2009. Standart Operational procedure: Lab Control. Jakarta : PT. KARYA MAS ADI NUSANTARA