Kajian Sifat Kimia Tanah Sulfat Masam untuk Kesesuaian Tanaman Padi di Lahan Rawa

Arief Wijayanto¹, Nuraeni Dwi Dharmawati¹, Hermantoro¹

¹Fakultas Teknologi Pertanian, Institut Pertanian Stiper Yogyakarta, Jl. Nangka II Maguwoharjo, Depok, Sleman, Daerah Istimewa Yogyakarta 55282 Email: ariefwijaya954@gmail.com

ABSTRAK

Rawa sulfat asam adalah horizon sulfida (pirit) yang kedalamannya < 50 cm atau horizon sulfida yang kedalamannya < 120 cm. (Penyok, 1986). Lahan rawa di Kalimantan Tengah sekitar 3.576.800 hektar. Kendala utama pemanfaatan lahan sawah yang belum optimal adalah banjir, kekeringan, dan keasaman air yang tinggi, yang dapat menyebabkan hasil panen kurang baik. Padi merupakan tanaman penghasil beras untuk ketahanan pangan Indonesia yang berkelanjutan. Oleh karena itu, guna memaksimalkan penggunaan lahan dan mencapai produktivitas yang tinggi, perlu dilakukan evaluasi kesesuaian lahan untuk padi tahan kimia. Tujuan dari penelitian ini adalah untuk menganalisis kimia lahan rawa dan mengevaluasi kesesuaian lahan rawa masam di wilayah Kabupaten Kapuas. Berdasarkan penelitian yang dilakukan, diperoleh hasil bahwa pH H₂O dan KCl sangat tinggi pada tanah yang sangat masam dengan nilai kurang dari 4, kandungan C organik dalam tanah sangat tinggi, dan kandungan N total pada tanah tersebut. Rata-rata kandungan P tanah yang tersedia rendah sedang, rata-rata K yang dapat ditukar rendah, kapasitas tukar kation tanah tinggi, kandungan aluminium tanah (Al-dd) tinggi, kandungan hidrogen tanah sedang, rata-rata kandungan besi tinggi dan kandungan sulfat pada tanah rendah. Kandungan FeS₂ di dalam tanah tergolong sedang. Daerah Irigasi Rawa Dadahup memiliki nilai Q sebesar 4,63% dan termasuk ke dalam Tipe Iklim A berdasarkan klasifikasi Schmidt-Ferguson. Artinya, iklim dan vegetasi dapat digolongkan sebagai daerah hujan tropis yang sangat lembab. Sangat sesuai (ketersediaan air, ketebalan tanah, total N dan K₂O), cukup sesuai (suhu, KTK tanah dan kadar garam tanah), dan agak sesuai (P₂O₅) untuk kesesuaian kimia tanah.

Kata Kunci: Tanah; sifat kimia; padi; masam; lahan rawa

PENDAHULUAN

Lahan rawa sulfat masam adalah lahan yang memiliki horizon sulfidik (pirit) di dalam kedalaman <50 cm atau sulfirik di dalam kedalaman <120 cm. (Dent,1986). Berdasarkan data Kementan, luas lahan rawa di Indonesia diperkirakan mencapai 34,1 juta hektare yang terdiri dari sekitar 20 juta hektare lahan rawa pasang surut, dan lebih dari 13 juta hektare lahan rawa lebak. Sedangkan luas lahan rawa di Kalimantan tengah memiliki potensi lahan rawa lebak dan pasang surut seluas 3.576.800 Ha. Luas lahan sulfat masam di Indonesia sekitar 6,70 juta ha atau 20,10% dari luas lahan rawa pasang surut (20,14 juta ha).

Padi merupakan komoditas tanaman pangan penghasil beras yang memegang peranan penting dalam kehidupan ekonomi Indonesia. Beras sebagai makanan pokok sangat sulit digantikan oleh bahan pokok lainnya seperti jagung, umbi-umbian, sagu dan sumber karbohidrat lainnya, sehingga keberadaan beras menjadi prioritas utama masyarakat dalam memenuhi kebutuhan asupan

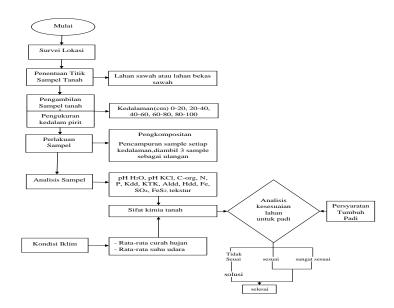
karbohidrat yang dapat mengenyangkan dan merupakan sumber karbohidrat utama yang mudah diubah menjadi energi. (Saragih,2001).

Kendala terbesar pemanfaatan lahan rawa terdahulu adalah genangan maupun kekeringan, namun saat ini dapat diatasi dengan pengelolaan tata air dan teknologi penataan lahan. Tanah gambut terbentuk dari timbunan bahan organik, sehingga kandungan karbon pada tanah gambut sangat besar. (Widjaja-Adhi et al. 1992). Tujuan dari penelitian ini, yaitu untuk menganalisis sifat kimia tanah lahan rawa dengan parameter pH H₂O, pH KCl, C-org, N, P, Kdd, KTK, Aldd, Hdd, Fe, SO₄, FeS₂, tekstur dan mengkaji kesesuain lahan rawa dan sulfat masam di wilayah Kapuas untuk budidaya tanaman padi.

METODE PENELITIAN

Tempat dan Waktu Penelitian

Penelitian ini dilaksanakan di Daerah Irigasi Rawa Dadahup, Kecamatan Dahadup, Kabupaten Kapuas, Provinsi Kalimantan Tengah. Waktu pengambilan sample bulan November 2020. Dan di analisis di labolatorium tanah Universitas Lambung Mangkurat Banjarmasin.

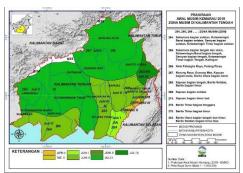

Gambar 1. Lahan sawah di blok A2

Gambar 2. Lahan sawah di blok A5

Teknik Pengambilan Sampel

Penelitian ini dilakukan dengan pengambilan sample pada lahan sawah dan lahan bekas sawah. Di lakukan dengan kedalaman 0-20 cm, 20-40 cm, 60-80 cm, 80-100 cm.

Tahap Penelitian


Langkah-langkah penelitian, yaitu sebagai berikut:

- 1. Survei lapangan
- 2. Penentuan titik pengambilan sample di lakukan di lahan sawah dan lahan bekas sawah.
- 3. Pengambilan sample tanah dengan menggunaan bor tanah dengan kedalaman 0-20 cm, 20-40cm, 40-60cm, 60-80cm dan 80-100cm.
- 4. Pengukuran kedalam pirit dengan menggunakan larutan hydrogen peroksida (H₂O₂).
- 5. Pengukuran ph tanah actual di lapangan
- 6. Analisis di labolatorium, dilakukan komposit dari setiap kedalaman kemudian diambil 3 sample sebagai ulangan.
- 7. Analisa di labolatorium untuk menguji sifat sifat kimia tanah
- 8. Analisa data curah hujan dan suhu udara di peroleh dari wibeste BMKG Tjilik Riwut di data curah hujan bulanan rata-rata selama 10 tahun terakhir (2010-2020).
- 9. Menilai (menggabungkan) kondisi sifat kimia tanah dan kondisi curah hujan kemudian diocokkan kesesuaiannya dengan persyaratan pertumbuhan tanaman padi rawa
- 10. Hasil penilaian kesesuaian ini di klasifikasikan menjadi 3 : sesuai, sangat sesuai, dan tidak sesuai.

HASIL DAN PEMBAHASAN

Deskripsi Lokasi Penelitian

Penelitian dilakukan di daerah irigasi rawa dadahup food Estate Unnamed Road, Desa Bentuk Jaya (Dahadup A5), Kecamatan Dahadup, Kabupaten Kapuas, Provinsi Kalimantan Tengah dengan luas 1.000Ha.

Gambar 3. Peta Kabupaten Kapuas

Kabupaten Kapuas terletak di Garis Khatulistiwa antara 0 08'48" - 3 027'00" Lintang Selatan dan 112 02'36" - 114 044'00" Bujur Timur. Kabupaten Kapuas pada umumnya termasuk daerah beriklim tropis dan lembab dengan temperatur berkisar antara 21–230 Celsius dan maksimal mencapai 360 Celsius. Intensitas penyinaran matahari selalu tinggi dan sumber daya air yang cukup banyak menyebabkan tingginya penguapan yang menimbulkan awan aktif/tebal. Topografi seluruh bentangan wilayah Kabupaten Kapuas relatif datar (0%-8%). Pada bagian utara merupakan daerah perbukitan, dengan ketinggian antara 100-500 meter dari permukaan air laut dan mempunyai tingkat kemiringan antara 8–150 dan merupakan daerah perbukitan / pegunungan dengan kemiringan \pm 15–25°.

Produktifitas Panen Tanaman Padi

Tabel 1. Produktifitas Panen Tanaman Padi

Tahun	Luas Panen	Produksi	Rata-rata
			Produksi
	(ha)	(ton)	(ku/ha)
2003	84 472	244 712,81	28,97
2004	93 600	288 794,00	30,85
2005	84 893	230 424,84	27,14
2006	87 780	236 923,00	26,99
2007	94 162	258 663,01	27,47
2008	99 603	277 195,15	27,83
2009	105 601	318 175,81	30,13
2010	112 212	322 393,00	28,73
2011	104 064	322 598,40	31,00
2012	115 946	369 751,94	31,89
2013	107 288	396 550,00	36,96
2014	96 885	373 550,00	38,56
2015	92 636	370 092,00	39,95

Sumber: badan pusat statistic Kalimantan Tengah

Berdasarkan tabel di atas pada empat tahun terakhir terjadi penurunan penurunan produksi tanaman padi yang disebabkan oleh penurunan luas lahan yang digunakan untuk produksi tanaman padi. Penurunan ini mungkin disebabkan juga oleh perluasan area perkebunan kelapa sawit karena dianggap lebih menghasilkan. Akan tetapi, rata-rata produksi tanaman padi terus mengalami peningkatan dari tahun ke tahun.

Tabel 2. Curah Hujan Kabupaten Kapuas Tahun 2010-2019

Bulan					Tahı	ın				
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Januari	324,4	355,4	177,7	273,3	185,5	736,4	459,1	480,1	386	281,8
Februari	322,7	225,7	177,71	623,4	73,6	253,9	508,4	434,9	207,2	481
Maret	623,6	458,4	177,72	330,2	328,8	265,5	459,1	337	342,7	395,5
April	544,8	255,6	177,73	492,6	217,1	406,1	435,7	330	134,4	274,9
Mei	517,3	309,4	177,74	453,7	373,7	338,9	513,2	334,1	133,4	69,7
Juni	452,6	301	177,75	82	174,2	313,9	452,4	318,9	118,6	35
Juli	457,9	319,9	177,76	385,7	65,3	101,1	175	277,2	148,3	7,3
Agustus	776,8	88,1	177,77	282,3	405,9	162,4	189,2	625,1	73,3	58,5
September	470,8	185,5	177,78	408,3	334,3	84	457,4	519,7	17,3	55,1
Oktober	480,2	464,8	177,79	200,1	351,3	318	189,2	440,4	155,8	179,7
November	553,9	388,3	177,8	423,3	764,7	609,5	320,3	496,6	265,2	133,1
Desember	516,7	806,7	177,81	620,9	322	312,5	343,1	404,7	324,3	194,4

Tabel 3. Klasifikasi Iklim Menurut Schmidt-Ferguson

Tipe Iklim	Nilai Q (%)	Keadaan iklim dan vegetasi	
A	0 < 14,3	Daerah sangat basah, hutan hujan	
		tropika	
В	14,3 – 33,3	Daerah basah, hutan hujan tropika	
С	33,3 – 60,0	Daerah agak basah, hutan rimba, daun	
		gugur pada musim kemarau	
D	60,0-100,0	Daerah sedang, hutan musim	
Е	100,0 – 167,0	Daerah agak kering, hutan sabana	
F	167,0 – 300,0	Daerah kering, hutan sabana	
G	300,0 - 700,0	Daerah sangat kering, padang ilalang	
Н	> 700,0	Daerah ekstrim kering, padang ilalang	

Sumber: lakitan (2002)

Berdasarkan klasifikasi iklim menurut Schmidt-Ferguson, Daerah Irigasi Rawa Dadahup *Food Estate Unnamed Road*, Desa Bentuk Jaya (Dahadup A5), Kecamatan Dahadup, Kabupaten Kapuas, Provinsi Kalimantan Tengah tergolong ke dalam tipe iklim A dikarenakan nilai Q yang didapat sebesar 4,63% sehingga keadaan iklim dan vegetasi tergolong daerah sangan basah dengan hutan hujan tropika.

Hasil Analisis Sifat Kimia Tanah

Parameter yang diuji dalam penelitian ini, yaitu sifat kimia tanah (Ph H₂O, pH KCl, C-org, N, P, Kdd, KTK, Al-dd, Hdd, Fe, SO₄, FeS₂, dan tekstur), iklim (data curah hujan dan data temperature), dan persyaratan tumbuh tanaman padi. Kriteria sifat kimia tanah disesuaikan dengan data Balai Penelitian Tanah seperti pada table di bawah ini.

Tabel 4. Kriteria Sifat Kimia Tanah

Parameter			Nilai		
tanah*	Sangat	Rendah	Sedang	Tinggi	Sangat
	rendah				tinggi
C (%)	<1	1-2	2-3	3-5	>5
N (%)	<0,1	0,1-0,2	0,21-0,5	0,75	>0,75
KTK (cmol	<5	5-16	17-24	25-40	>40
(+)/kg)					
P (ppm)	1	2	3	9	13
Al-dd (cmol	1	3	8	21	40
(+)/kg)					
Hdd (cmol	<0,5	0,5-1	1-3	3-5	>5
(+)/kg)					
Fe ²⁺ (ppm)	1	3	5	19	53
SO ₄ ²⁻ (ppm)	20	40	100	250	400
FeS ₂ (%)	0,1-0,2	0,2-0,35	0,35-0,6	0,6-0,9	>0,9

Tabel 5. Kriteria pH Tanah

Kriteria	Sangat	Masam	Agak	Netral	Agak	Alkalis
	masam		masam		alkalis	
pH H ₂ O	<4,5	4,5-5,5	5,5-6,5	6,6-7,5	7,6-8,5	>8,5

pH Tanah Bekas Sawah (Va) dan Tanah Sawah (V)

Tabel 6. pH Tanah

Jenis tanah	pH H ₂ O	pH KCl	Kriteria
Va	3,38	3,33	Sangat masam
	3,60	3,48	Sangat masam
	3,44	3,32	Sangat masam
	3,75	3,64	Sangat masam
V	3,75	3,62	Sangat masam
	3,79	3,69	Sangat masam
	3,80	3,53	Sangat masam
	3,74	3,67	Sangat masam

Berdasarkan data di atas, pH rata-rata dari H₂O dan KCl sebesar 3,57 dan 3,44. Nilai pH baik H₂O maupun KCl pada tanah sawah tinggi dengan sifat masing-masing sangat masam, sehingga pada nilai pH tersebut kurang baik untuk tanaman. Nilai pH netral, yaitu sebesar 7. Akan tetapi, nilai pH optimum untuk tanaman padi sekitar 6,6.

Kadar C-Organik Tanah Bekas Sawah (Va) dan Tanah Sawah (V)

Tabel 7. Kadar C-Organik Tanah

Jenis tanah	C-organik (%)	Kriteria	
Va	11,49	Sangat tinggi	
	5,49	Sedang	
	14,46	Sangat tinggi	
	9,86	Sangat tinggi	
V	7,81	Sangat tinggi	
V	8,39	Sangat tinggi	
	3,75	Sedang	
	10,07	Sangat tinggi	

Besarnya C-organik pada lahan bekas sawah disebabkan oleh adanya penambahan bahan organik yang berasal dari sisa-sisa akar tanaman serta berlangsungnya proses dekomposisi yang lebih lambat. Rata-rata persentase C-organik pada tanah sawah sebesar 7,50% dan tanah bekas sawah 10,33%, yang mana nilai tersebut sangat tinggi. Kedaan C-organik yang tinggi mendekomposisi yang menghasilkan asam-asam organik yang menghasilkan anion organik, kemudian akan mengikat ion Al dan Fe sehingga membentuk senyawa kompleks yang mengakibatkan P menjadi tersedia di dalam larutan tanah.

Kandungan N Total Tanah Bekas Sawah (Va) dan Tanah sawah (V)

Tabel 8. Kandungan N Total Tanah

Jenis tanah	N (%)	Kriteria
Va	0,30	Sedang
	0,41	Sedang
	0,51	Sedang
	0,53	Sedang
V	0,46	Sedang
	0,48	Sedang
	0,44	Sedang
	0,42	Sedang

Tanaman padi mampu menyerap N dari tanah sekitar 7-19%. Sedangkan, penyerapan pupuk N yang diberikan ke tanaman hanyalah sekitar 40-50%, kadar N rata-rata dalam jaringan tanaman adalah 2%-4% berat kering. Rata-rata kandungan N pada tanah sawah dan tanah bekas sawah masingmasing sebesar 0,45% dan 0,44%, yang mana nilai tersebut menunjukka angka yang sedang. Hal tersebut menunjukkan bahwa serapan kebutuhan N untuk tanaman padi sangat rendah sehingga perlu adanya penambahan unsur N dari pupuk.

Kandungan P Tersedia pada Tanah Bekas Sawah (Va) dan Tanah Sawah (V)

Tabel 9. Kandungan P Tersedia pada Tanah

Jenis tanah	P Tsd (ppm P)	Kriteria
Va	31,75	Sangat tinggi
	11,01	Sangat tinggi
	18,71	Sangat tinggi
	92,95	Sangat tinggi
V	30,59	Sangat tinggi
	26,56	Sangat tinggi
	47,65	Sangat tinggi
	23,56	Sangat tinggi

Rata-rata kandungan P tersedia pada tanah bekas sawah dan tanah sawah ayitu sebesar 38,61 ppm P dan 32,09 ppm P. Kandungan P tersedia pada tanah bekas sawah lebih tinggi dibandingkan dengan tanah sawah. Kandungan P yang tinggi mampu mencukupi kebutuhan tanaman. Akan tetapi, unsur P memiliki sifat yang immobile yang menyebabkan kurang tersedia bagi tanaman. Selain itu, unsur P mudah terikat dengan unsur Al dan Fe pada tanaman. Akan tetapi, unsur P memiliki sifat yang immobile yang menyebabkan kurang tersedia bagi tanaman. Selain itu, unsur P mudah terikat dengan unsur Al dan Fe pada tanah masam. Kondisi ini mengakibatkan efisiensi pemupukan P menjadi rendah. Pada lahan sawah, efisiensi pemupukan P tidak mencapai 10 %.

K yang dapat Ditukarkan (Kdd) Tanah Bekas sawah (Va) dan Tanah Sawah (V)

Tabel 10. K yang dapat Ditukarkan (Kdd) Tanah

	<i>J U</i> 1	\ /
Jenis tanah	Kdd	Kriteria
Jenis tanan	(cmol(+)/kg)	Kincha
Va	0,01	Sangat rendah
	0,07	Sangat rendah
	0,20	Rendah
	0,08	Sangat rendah
V	0,11	Rendah
	0,07	Sangat rendah
	0,12	Rendah
	0,14	Rendah

Rata-rata K yang dapat ditukarkan pada tanah sawah maupun tanah bekas sawah menunjukkan nilai yang rendah, masing-masing sebesar 0,11 dan 0,9. Nilai Kdd yang diperoleh merupakan nilai kritis, karena terlalu rendah. Ketersediaan K yang rendah dapat dicukupi dari cadangan mineral K yang berada dalam keseimbangan dengan K dalam air irigasi dan dekomposisi bahan organik.

Kapasitas Tukar Kation pada Tanah Bekas sawah (Va) dan Tanah Sawah (V)

Tabel 11. Kapasitas Tukar Kation pada Tanah

1		1
Jenis tanah	KTK	Kriteria
	(cmol(+)/kg)	
Va	53,59	Sangat tinggi
	20,61	Sedang
	75,46	Sangat tinggi
	52,84	Sangat tinggi
V	46,82	Sangat tinggi
	48,76	Sangat tinggi
	45,78	Sangat tinggi
	53,74	Tinggi

Rata-rata nilai kapasitas tukar kation pada tanah sawah sebesar 48,78(cmol(+)/kg), dan dari tanah bekas sawah sebesar 50,63(cmol(+)/kg). KTK yang tinggi bila didominasi oleh kation basa, Ca, Mg, K, Na (kejenuhan basa tinggi) dapat meningkatkan kesuburan tanah, tetapi bila didominasi oleh kation asam, Al, H (kejenuhan basa rendah) dapat mengurangi kesuburan tanah. Karena unsur-unsur hara terdapat dalam kompleks jerapan koloid maka unsur-unsur hara tersebut tidak mudah hilang tercuci oleh air.

$Kadar\ Aluminium\ dalam\ Tanah\ (Al\text{-}dd)\ pada\ Tanah\ Bekas\ Sawah\ (Va)\ dan\ Tanah\ Sawah\ (V)$

Tabel 12. Kadar Aluminium dalam Tanah (Al-dd)

Jenis tanah	Al-dd	Kriteria	
Jenns tanan	(cmol(+)/kg)	Kiiteiia	
Va	4,48	Rendah	
	13,89	Sedang	
	6,37	Rendah	
	14,73	Sedang	
V	13,11	Sedang	
	14,65	Sedang	
	13,23	Sedang	
	10,67	Sedang	

Rata-rata kadar aluminium dalam tanah (Al-dd) pada tanah sawah dan tanah bekas sawah masing - masing sebesar 12,92(cmol(+)/kg) dan 9,87(cmol(+)/kg). Data tersebut menunjukkan bahwa kadar aluminium dalam tanah sedang.

Kadar Hidrogen yang Terkandung pada Tanah Bekas Sawah (Va) dan Tanah Sawah (V)

Tabel 13. Kadar Hidrogen yang Terkandung pada Tanah

Jenis tanah	Hdd	Kriteria	
	(cmol(+)/kg)		
Va	1,68	Sedang	
	4,73	Tinggi	
	0,82	Rendah	
	0,77	Rendah	
V	2,30	Sedang	
	2,10	Sedang	
	2,81	Sedang	
	2,00	Sedang	

Rata-rata kadar hidrogen yang terkandung dalam tanah sawah sebesar 2,30 (cmol(+)/kg) dan pada tanah bekas sawah sebesar 2 (cmol(+)/kg). Data tersebut menunjukkan nilai yang sedang.

Kandungan Fe²⁺ pada Tanah Bekas Sawah (Va) dan Tanah Sawah (V)

Tabel 14. Kandungan Fe²⁺ pada Tanah

		- r r
Jenis tanah	Fe ²⁺ (ppm)	Kriteria
Va	43,75	Tinggi
	81	Sangat tinggi
	202,66	Sangat tinggi
	44,54	Tinggi
V	103,57	Sangat tinggi

JURNAL XXXXXX, Vol. xxxx, No.xxxx, Bulan Tahun

121,65	Sangat tinggi
86,87	Sangat tinggi
30,69	Tinggi

Rata-rata kandungan besi (II) pada tanah sawah dan tanah bekas sawah masing-masing sebesar 100,7 ppm dan 92,99 ppm. Data tersebut menunjukkan nilai yang tinggi dan berada pada batas kritis (sekitar 50-100 ppm). Apabila kadar besi(II) dalam larutan = 350 ppm dapat menyebabkan keracunanan pada padi. Akan tetapi, keadaan tersebut dapat dihindari dengan cara pencucian tanah atau meangguhkan waktu tanam sampai melewati puncak reduksi. Meningkatnya kelarutan Fe menguntungkan untuk tanah padi sawah karena sekresi O₂ akar-akar padi meningkatkan kebutuhan Fe tanaman, tetapi kelebihan Fe langsung mengganggu tanaman atau secara tidak langsung dapat menghambat serapan N dan K.

Kandungan SO₄²⁻ pada Tanah Bekas Sawah (Va) dan Tanah Sawah (V)

Tabel 15. Kandungan SO₄²- pada Tanah

1 4001 10. 114		oo4 pada raman
Jenis tanah	SO ₄ ² -	Kriteria
	(ppm)	Kinena
Va	1561,93	Sangat tinggi
	481,94	Sangat tinggi
	2449,55	Sangat tinggi
	1161,41	Sangat tinggi
V	1336,45	Sangat tinggi
	312,35	Tinggi
	1146,34	Sangat tinggi
	1726,43	Sangat tinggi

Rata-rata kandungan $\overline{SO_4^{2-}}$ tanah sawah dan tanah bekas sawah masing-masing 1280,39 ppm dan 1413,71 ppm. Hal tersebut menunjukkan bahwa kandungan SO_4^{2-} pada tanah tinggi.

Kandungan FeS₂ pada Tanah Bekas Sawah (Va) dan Tanah Sawah (V)

Tabel 16. Kandungan FeS₂ pada Tanah


Jenis tanah	FeS_2	
	(%)	Kriteria
Va	0,83	Tinggi
	0,22	Rendah
	0,32	Rendah
	0,70	Tinggi
V	0,56	Sedang
	0,42	Sedang
	0,48	Sedang
	0,61	Tinggi

Rata-rata kandungan FeS_2 tanah sawah dan tanah bekas sawah memiliki nilai yang sama, yaitu sebesar 0,52%, dengan kriteria sedang.

Analisa Klas Tekstur Tanah

Tabel 17. Analisa Klas Tekstur

Jenis tanah	Tekstur (%)		Klas tekstur	Klasifikasi	Kriteria	
jenis tanan —]	Pasir	Debu	Liat	USDA	Kiasiiikasi	Kincha
	1,66	34,89	63,45	Liat	t1	Halus
Tanah Bekas	1,81	28,75	69,44	Liat	t1	Halus
Sawah	7,1	42,36	50,53	Liat berdebu	t1	Halus
	10,01	65,42	24,57	Berdebu	t3	Sedang
	2,97	41,07	47,78	Berliat	t1	Sangat halus
	3,08	27,69	69,16	Liat	t1	Halus
	2,62	53,56	43,82	Liat berdebu	t2	Agak halus
	9,43	33,51	65,32	Liat	t1	Halus

Gambar 4. Segitiga Tekstur USDA

Berdasarkan hasil analisis di atas, pada tanah bekas sawah rata-rata mengandung 5,15% pasir, 42,86% debu, 52% liat, dengan menggnakan klas tekstur USDA termasuk tanah liat berdebu dan halus. Pada tanah sawah rata-rata mengandung 4,53% pasir, 38,96% debu, 56,52% liat, dengan menggunakan klas tekstur USDA termasuk tanah berliat dan halus. Berdasarkan data tersebut didapatkan bahwa tanah sawah memiliki kemasaman, yaitu liat dan halus.

Analisa Kesesuaian Tanah

Tabel 18. Analisa pesyaratan tumbuh padi

Kualitas/Karakteristik -	Kelas Kesesuaian Lahan Aktual					
Lahan	Tanaman Padi					
Lanan	S1	S2	S3	N		
Temperatur (t)						
- Rata-rata Tahunan (°C)	25 - 28 °C	23 - 25	>30-33	>33		
Ketersedian Air (w) - Bulan Basah	6 - 8	4 - <6	2 - <4	<2		
Media Perakaran (r)						

			Sangat	
- Drainase Tanah	Buruk/terhambat	Agak baik	terhambat,baik,agak	cepat
			cepat	
- Tekstur	Halus,agak	sedang	Agak kasar	kasar
	halus	secong	1 -8 mil 11 mil mil	1100001
- Kedalaman Efektif	>50	40 - 50	25 - 40	<25
(cm)				
Gambut:				
- Kematangan	Saprik	Saprik,hemik	Hemik	fibrik
- Ketebalan (cm)	< 50 cm	50 - 100	100 - 150	>150
Retensi Hara (f)				
- KTK Tanah	>16	5 - 16	<5	-
- pH Tanah				
- PH H20	5,5 – 7,0	4,5-5,5	<4,5	-
- C-organik	>1,2	0,8 -1,2	<0,8	-
Kegaraman (c)				
- salinitas	3,8	S_2	3,15	S_2
(mmhos/cm)	3,6	52	3,13	3 2
Toksisitas (x)				
- Kedalaman Sulfidik				
(cm)	_	_	-	_
Hara Tersedia (n)				
- Total N	Sedang	Rendah	Sangat rendah	-
- P ₂ O ₅	Tinggi	Sedang	Rendah ,sangat	_
- 1205	Imggi	Schalig	rendah	_
- K ₂ O	Sedang	Rendah	Sangat rendah	-

KESIMPULAN

Berdasarkan penelitian yang telah dilakukan didapatkan hasil bahwa pH H₂O dan KCl pada tanah sangat masam dengan nilai dibawah 4, kadar C-organik yang terdapat pada tanah sangat tinggi, kandungan N total pada tanah yang sangat rendah, rata-rata kandungan P tersedia pada tanah yang sedaang, rata-rata K yang dapat ditukarkan pada tanah rendah, kapasitas tukar kation pada tanah tinggi, kadar aluminium dalam tanah (Al-dd) tinggi, kadar hydrogen yang terkandung pada tanah sedang, rata-rata kandungan besi (II) rendah, serta kandungan sulfat pada tanah tinggi kadungan Fes2 yang sedang pada tanah. Daerah Iirgasi Rawa Dadahup termasuk ke dalam tipe iklim A berdasarkan klasifikasi menurut Schmidt-Ferguson karena memiliki nilai Q sebesar 4,63% sehingga keadaan iklim dan vegetasinya tergolong daerah sangat basah dengan hujan tropika. Kesesuaian sifat kimia meliputi sangat sesuai (ketersediaan air, ketebalan tanah, total N, dan K₂O), cukup sesuai (temperatur udara, KTK tanah, dan salinitas tanah), dan sesuai marginal (P₂O₅).

Untuk dapat meningkatkan ke suburan tanah di anjurkan melakukan dengan tindakan budidaya melalui penambahan bahan organik, pengapuran, pemberian pupuk, dan bioteknologi. Penyesuaian dosis sesuai ke butuhan tanaman dapat di lakukan dengan cara pemetaan menggunakan drone.

DAFTAR PUSTAKA

- CPIS (Centre For Policy And Implementation Studies) Dan Pusat Penelitian Tanah Dan Agroklimat. 1991). Penelitian Dan Pengembangan Pupuk Kompos Sampah Kota, Badan Litbang Pertanian, Departemen Pertanian
- Dent, David.1986. Acid sulphate solis: a base line for research and development. ILRI publication. Juli 20. 1995. International Publication 39. International Institute for land reclamation and improvement, wageningen, the Netherland
- Gracia C, Hernandez T, Costa F, Ceccati B. 1994. *Biochemical Parameters in Soil Regenerated by the Addition of organic wasted*. Wasted Management And Res. 12: 457-466.
- Hartatik, W., K. Idris, S. Sabiham, S. Djuniwati, dan J.S. Adiningsih. 2004. Pengaruh pemberian fosfat alam dan SP-36 pada tanah gambut yang diberi bahan amelioran tanah mineral terhadap serapan P dan efisiensi pemupukan P. dalamProsiding Kongres Nasional VIII HITI. Universitas Andalas. Padang.
- Lingga, P. 1986. Petunjuk Penggunaan Pupuk. Penebar Swadaya, Jakarta. 163 hlm.
- Pujiasmanto, 2013. Perkuat ketahanan pangan nasional kita. Guru Besar Fakultas Pertanian Universitas Sebelas Maret (UNS). Surakarta. http://www.uns.ac.id.
- Saragih, B. 2001. Keynote Address Ministers of Agriculture Government of Indonesia. 2nd National Workshop On Strengthening The Development And Use Of Hibrid Rice In Indonesia. 1:10 Schroeder, D. 1984. Soils. Facts and concepts. Int. Potash Inst. Bern. 140 h.
- Tan. 1993. Principles of Soil Chemistry. Marcel Dekker, Inc. New York. 362pp.
- Widjaja-Adhi, I P.G. 1988. Physical and chemical characteristic of peat soil of Indonesia. IARD J. 10:59-64.