KAJIAN KINERJA PROSES KONVERSI LIMBAH CAIR *PALM OIL MILL EFFELUENT* MENJADI BIOGAS DAN LISTRIK , STUDI KASUS DI PT. SUPRA MATRA ABADI

Kalistus W. Simbolon, Nuraeni D. Dharmawati, Eka Suhartanto

Jurusan Teknik Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Stiper, Yogyakarta

Jl. Mancasan Tundan, Purwomartani, Kalasan, Sleman, Yogyakarta, 55281 Indonesia

E-Mail: kalistus456@gmail.com

Palm Oil Mill Effluent (POME) adalah salah satu limbah utama dari industri kelapa sawit dengan potensi pencemaran lingkungan yang paling besar. Pembangkit listrik tenaga biogas mengambil manfaat dari proses penguraian alami untuk membangkitkan listrik. Mengubah POME menjadi biogas untuk dibakar dapat menghasilkan energi sekaligus mengurangi dampak perubahan iklim dari proses produksi minyak kelapa sawit. Pemanfaatan limbah cair dapat dikonversikan menjadi energi listrik. Dengan adanya stetment tersebut untuk mendapatkan nilai listrik dan biogas, data yang digunakan meliputi produksi TBS, produksi limbah cair, *Chemical Oxygen Demand* (COD), produksi biogas dan produksi listrik. Tujuan penelitian ini untuk menganalisis hubungan antara produksi COD, produksi gas metana dan produksi listrik dan menghitung nilai biogas dan listrik dari produksi limbah cair. Data yang dianalisis pada penelitian ini menggunakan data produksi limbah cair, *Chemical Oxygen Demand* (COD), biogas, listrik dalam waktu satu bulan,

Hasil penelitian ini menunjukkan bahwa nilai rata-rata potensi biogas yaitu 21.067 Nm³, nilai rata-rata potensi listrik yaitu 3.322 Kwh, Hasil nilai rata-rata produksi biogas yaitu 15.470 Nm³, dan nilai produksi listrik yaitu 8000 kwah.

Kata kunci: Limbah cair, COD, biogas, listrik.

PENDAHULUAN

Indonesia saat ini adalah produsen dan eksportir minyak sawit terbesar di dunia. Dalam perkembangan industri kelapa sawit, residu yang dianggap sebagai pencemar lingkungan yaitu limbah cair kelapa sawit. Namun, sebenarnya jika diproses manfaatkan sebaik-baiknya, limbah ini akan memberikan nilai lebih baik lebih secara signifikan pada industri dan masyarakat sekitar pabrik (Wiharja et al., 2021).

Kebutuhan akan listrik saat ini menjadi salah satu kebutuhan dasar dari masyarakat, akan tetapi kondisi kelistrikan di berbagai daerah dapat dikatakan cukup kritis, salah satunya di daerah perkebunan kelapa sawit yang belum mendapatkan aliran listrik dari Perusahaan Listrik Negara (PLN). Sehingga untuk memenuhi kebutuhan akan listriknya menggunakan pembangkit listrik tenaga diesel dan pembangkit listrik tenaga uap dari pabrik kelapa sawit itu sendiri yang hanya beroperasi pada saat proses produksi. Penggunaan pembangkit listrik tenaga diese sangat bergantung pada bahan bakar fosil (solar) yang tidak *sustainable*. Untuk mengurangi ketergantungan tersebut perusahaan mengembangkan potensi energi baru dan terbarukan yang dapat menjadi solusi kemandirian penyediaan tenaga listrik dan sekaligus menjadi alternatif bagi pembangunan energi baru dan terbarukan dari potensi limbah cair kelapa sawit atau *Palm Oil Mill Effluent* (POME) (Erhaneli et al., 2019).

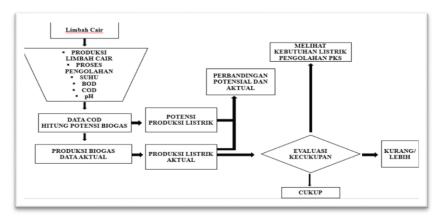
Dalam pemanfaatan limbah cair salah satu upaya yang dapat dilakukan yaitu energi terbarukan biogas, biogas memiliki peluang yang besar dalam

pengembangannya. Limbah cair adalah sumber pengembangan listrik bagi perusahaan maupun masyarakat. . Limbah cair ini selain harus diolah supaya memenuhi baku mutu lingkungan sebelum dibuang ke sungai, juga mengeluarkan gas methana yang berkontribusi pada pemanasan global. *Methana* sebagai bagian dari gas rumah kaca memiliki efek lebih besar 23 kali dibanding dengan CO2 (Anonim, 2011).

Pembangkit listrik tenaga biogas mengambil manfaat dari proses penguraian alami untuk membangkitkan listrik. Mengubah limbah cair kelapa sawit atau *Palm Oil Mill Effeluent* (POME) menjadi biogas untuk dibakar dapat menghasilkan energi sekaligus mengurangi dampak perubahan iklim dari proses produksi minyak kelapa sawit. Pemanfaatan limbah cair dapat dikonversikan menjadi energi listrik. Pembangunan pembangkit listrik biomassa air limbah kelapa sawit merupakan hal yang strategis dan mendesak dalam rangka tujuan penyediaan listrik bagi masyarakat, khususnya yang berada di sekitar pabrik kelapa sawit. Pengembangan pembangkit listrik tenaga biogas limbah cair di kawasan perkebunan kelapa sawit penting untuk *launching* pembangkit lisrik tenaga biogas dan unit percontohan yang akan menjadi pembelajaran bagi industri sejenis (Zulkifli, 2016).

Hasil penelitian ini berguna dalam memanfaatan limbah cair kelapa sawit sebagai sumber energi listrik engine pada pabrik pengolahan kelapa sawit. Penelitian yang memberi potensi yang baik dalam kinerja konversi POME menjadi biogas. Dengan demikian agar dampak dari keberadaan limbah kelapa sawit tidak meluas atau lebih parah maka harus dilakukan penanganan yang tepat terhadap limbah

tersebut. Dampak negatif yang ditimbulkan limbah kelapa sawit sangat merugikan dan menjadi masalah bagi lingkungan sekitar bila tidak diolah kembali.


METODE PENELITIAN

Alat dan Bahan

Alat yang digunakan alat pengolahan konversi limbah cair ke biogas yang diantaranya yaitu *vibrating screen*, Digester, *Cooling Tank* dan alat pengolahan konversi biogas ke listrik yang diantaranya yaitu *Blower*, Biogas *clean*, *Dehumidifier*, Gas *Engine*.

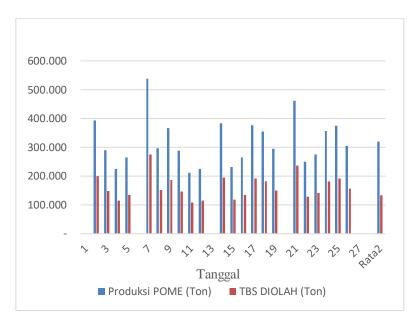
Alat yang digunakan pada penelitian kali ini adalah laptop dalam pengamatan dan perhitungan rumus.

Tahapan Penelitian

Gambar.1 Tahapan Penelitian

Pada gambar 1 hasil dari pengolahan tandan buah segar yaitu limbah cair, limbah cair yang dihasilkan oleh pengolahan tandan buah segar mengandung nilai COD, pH, suhu, Data COD digunakan untuk menghitung potensi biogas dan nilai potensi biogas digunakan untuk menghitung potensi listrik dengan menggunakan

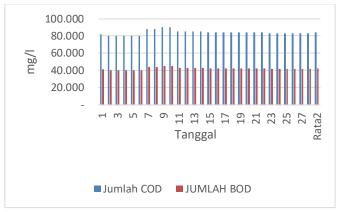
rentang waktu satu bulan. Data hasil potensi biogas dan data hasil potensi listrik digunakan untuk perbandingan dengan produksi biogas dan produksi listrik.


Perbandingan dilakukan untuk mengamati rumus yang digunakan akurat atau tidak akurat. Hasil perbandingan yang dilakukan yaitu hasil potensi biogas dan potensi tidak akurat dan evaluasi kecukupan pada penggunaan listrik tidak tercukupi. Data COD, produksi listrik dan data produksi biogas dilakukan pengamatan dengan mencari hubungan antara produksi biogas dan produksi listrik. Hasil pengamatan yang dilakukan dengan mencari hubungan tersebut yaitu koefisien determinasi yang asrtinya bahwa biogas dipengaruhi oleh nilai COD dan listrik dipengaruhi oleh biogas. Dan juga hasil listrik yang diproduksi memenuhi kecukupan untuk pengolahan tandan buah segar pada pabrik keapa sawit

HASIL DAN PEMBAHASAN

Tabel.1

Tanggal	Produksi POME (Ton)	TBS DIOLAH (Ton)
1		
2	392.361	200.104
3	289.690	147.742
4	223.970	114.225
5	264.533	134.912
6		-
7	539.082	274.932
8	296.500	151.215
9	366.193	186.758
10	287.410	146.579
11	211.764	108.000
12	225.107	114.805
13		-
14	382.798	195.227
15	231.396	118.012
16	264.101	134.692
17	375.989	191.754
18	354.230	180.657
19	294.204	150.044
20		-
21	462.266	235.756
22	249.972	127.486
23	275.154	140.329
24	356.955	182.047
25	375.454	191.482
26	304.805	155.451
27		-
28		-
Rata ²	319.270	132.674

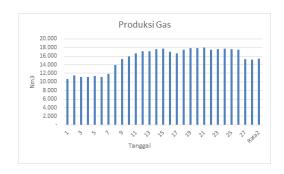

Sumber: Analisis data primer (2022)

Gambar 1 Grafik Diagram Produksi Limbah Cair Berdasarkan tabel 1 dan gambar 1 bahwa produksi limbah terendah dan tertinggi yaitu pada tanggal 11 dan 7 yaitu 211.476 ton dan 539.082 ton. Kemudian rata-rata hasil TBS yang diolah yaitu 319.270 ton dan rata-rata produksi POME yang dihasilkan yaitu 132.674 ton.

Tabel 2 Karakteristik Limbah Cair

Tanggal	Produksi POME (Ton)	Jumlah COD	JUMLAH BOD
1		81.800	40.900
2	392.361	80.300	40.150
3	289.690	80.300	40.150
4	223.970	80.300	40.150
5	264.533	80.300	40.150
6		80.300	40.150
7	539.082	88.000	44.000
8	296.500	88.000	44.000
9	366.193	90.100	45.050
10	287.410	90.100	45.050
11	211.764	85.100	42.550
12	225.107	85.100	42.550
13		85.100	42.550
14	382.798	85.100	42.550
15	231.396	84.000	42.000
16	264.101	84.000	42.000
17	375.989	84.000	42.000
18	354.230	84.000	42.000
19	294.204	84.000	42.000
20		84.000	42.000
21	462.266	84.000	42.000
22	249.972	84.000	42.000
23	275.154	83.200	41.600
24	356.955	83.200	41.600
25	375.454	83.200	41.600
26	304.805	83.200	41.600
27		83.200	41.600
28		83.200	41.600
Rata ²	319.270	83.968	41.984

Gambar 2 Grafik Karaktersitik Limbah cair

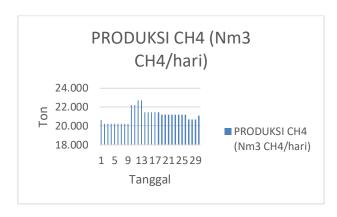

Berdasarkan tabel 2 dan gambar 2 yang diamati dapat diperolah rata-rata karakteristik limbah cair dari BOD 41.984 mg/l dan COD 83.968 mg/l. Nilai tertinggi

pada BOD yaitu 45.050 mg/l dan terendah 40.150 mg/l, kemudian pada COD tertinggi yaitu 90.100 dan terendah 80.300 mg/l.

Tabel 3 Produksi Gas yang dihasilkan

Tanggal	Produksi Gas
1	10.625
2	11.460
3	11.080
4	11.128
5	11.349
6	11.134
7	11.880
8	13.940
9	15.240
10	15.880
11	16.630
12	17.123
13	17.130
14	17.595
15	17.690
16	16.954
17	16.680
18	17.452
19	17.846
20	17.860
21	17.980
22	17.475
23	17.568
24	17.780
25	17.617
26	17.499
27	15.340
28	15.216
Rata ²	15.470

Sumber: Analisis data primer (2022)



Gambar 3 Grafik Produksi Gas yang dihasilkan

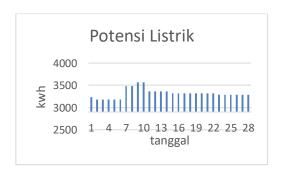
Berdasarkan tabel 3 dan gambar 3 diperoleh hasi rata-rata produksi biogas $15.470~\mathrm{Nm^3}$. Hasil produksi tertinggi dan terendah biogas yaitu pada $17.980~\mathrm{dan}$ $10.625~\mathrm{Nm^3}$.

Tabel 4 Potensi Produksi Gas Metana

Tanggal	Potensi produksi biogas (Nm3)
1	20614
2	20236
3	20236
4	20236
5	20236
6	20236
7	20236
8	20236
9	20236
10	22176
11	22176
12	22705
13	22705
14	21445
15	21445
16	21445
17	21445
18	21445
19	21168
20	21168
21	21168
22	21168
23	21168
24	21168
25	21168
26	21168
27	20699
28	20699
29	20699
rata-rata	21067

Gambar 4 Grafik Potensi Produksi Gas metana

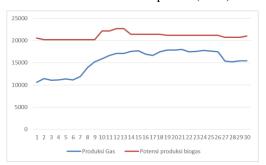
Berdasarkan tabel 4 dan gambar 4 diperoleh hasi rata-rata potensi produksi biogas 21.067 Nm³.

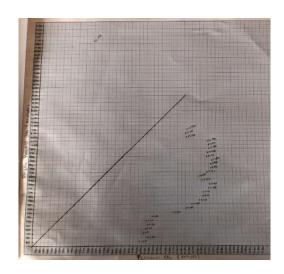

Tabel 5 Produksi listrik

Tanggal	Produksi POME (Ton)	Produksi Gas (Nm3)	Gas yang dibutuhkan Gas Engine (Nm3)	Produksi Listrik (kwh)	Sisa Biogas yang tidak dikonversi (Nm3)
1		10625	0	О	10625
2	392361	11460	2577	5900	8883
3	289690	11080	2642,25	5900	8437,75
4	223970	11128	1978,5	4300	9149,5
5	264533	11349	986	2200	10363
6		11134	0	0	11134
7	539082	11880	4787,73	10700	7092,27
8	296500	13940	4544,25	10200	9395,75
9	366193	15240	7844,75	17600	7395,25
10	287410	15880	3177,75	7000	12702,25
11	211764	16630	4531,5	10200	12098,5
12	225107	17123	4365,25	9800	12757,75
13		17130	0	0	17130
14	382798	17595	4287	9500	13308
15	231396	17690	5349	12100	12341
16	264101	16954	2236	4900	14718
17	375989	16680	5335	12000	11345
18	354230	17452	2941	6600	14511
19	294204	17846	2542	5800	15304
20		17860	0	0	17860
21	462266	17980	6497	14800	11483
22	249972	17475	2877	6600	14598
23	275154	17568	2687	6100	14881
24	356955	17780	6219	14000	11561
25	375454	17617	2566	5800	15051
26	304805	17499	2699	6100	14800
27		15340	0	0	15340
28		15216	0	0	15216
rata-rata	319269,7273	15469,67857	2988,21357	6717,86	12481,465

Berdasarkan tabel 5 menunjukkan bahwa rata-rata produksi biogas sebanyak 15.470 kwh dalam satu bulan untuk memenuhi kebutuhan biogas sebagai bahan bakar dalam sebulan sebesar 2.988 agar menghasilkan gas engine sebesar 6.718 kwh. Dapat dilihat juga pada tabel 4.5 diatas bahwa gas yang dihasilkan tidak seluruhnya menjadi bahan bakar gas engine atau dikonversi menjadi listrik. Produksi biogas yang tidak dikonversikan menjadi listrik rata-rata 12.481 Nm³ dan jumlah sisa biogas yang tidak dikonversi adalah 349.481 Nm³. Pada biogas yang tidak konversi biasanya dialihkan menjadi *burner* atau bahan bakar boiler dan juga ke *flare*.

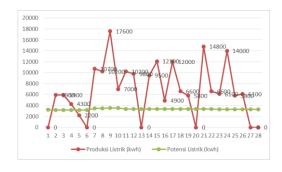
.


Tanggal	Potensi Produksi Listrik (kwh)
1	3236
2	3177
3	3177
4	3177
5	3177
6	3177
7	3481
8	3481
9	3565
10	3565
11	3367
12	3367
13	3367
14	3367
15	3323
16	3323
17	3323
18	3323
19	3323
20	3323
21	3323
22	3323
23	3292
24	3292
25	3292
26	3292
27	3292
28	3292
Rata ²	3322

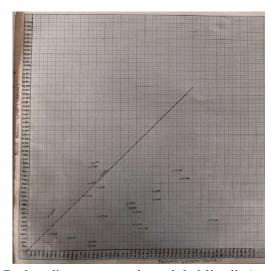

Berdasarkan tabel 6 menunjukkan bahwa rata-rata potensi produksi biogas sebanyak 3.332 kwh.

Tabel 7 Perbandingan produksi biogas dan potensi produksi biogas

Tanggal	Produksi Gas (Nm3)	Potensi produksi biogas (Nm3)	SELISIH PERBANDINGAN (%)
1	10625	20614	94
2	11460	20236	76,5
3	11080	20236	82,6
4	11128	20236	81,8
5	11349	20236	78,3
6	11134	20236	81,7
7	11880	20236	70,3
8	13940	20236	45,1
9	15240	20236	32,7
10	15880	22176	39,6
11	16630	22176	33,3
12	17123	22705	32,5
13	17130	22705	32,5
14	17595	21445	21,8
15	17690	21445	21,2
16	16954	21445	26,4
17	16680	21445	28,5
18	17452	21445	22,8
19	17846	21168	18,6
20	17860	21168	18,5
21	17980	21168	17,7
22	17475	21168	21,1
23	17568	21168	20,4
24	17780	21168	19
25	17617	21168	20,1
26	17499	21168	20,9
27	15340	20699	34,9
28	15216	20699	36
29	15470	20699	36
rata-rata	15470	21067	33,8



Gambar 7 Perbandingan data aktual biogas dan biogas terhitung Pada Gambar 7 terdapat hasil bahwasanya hasil perhitungan potensi produksi gas metana atau biogas lebih tinggi daripada hasil produksi biogas secara aktual.

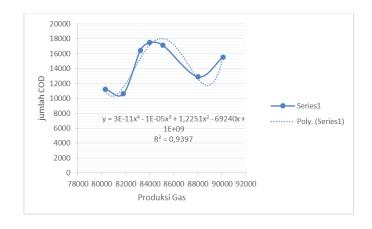

Gambar 8 Perbandingan antara produksi biogas dan potensi biogas menggunakan diagram *scatter*

Pada Gambar 8 Perbandingan antara produksi actual biogas dan potensi biogas menggunakan diagram scatter pada garis linear tidak membentuk kemiringan 45° yang berarti plot pada grafik tidak membentuk pola yang ideal dan rumus dengan lsitrik yang di produksi secara aktual dengan potensi produksi listrik secara terhitung tidak terpenuhi atau tidak dapat digunakan dengan efesien. Sesuai dengan produksi listrik aktual dengan potensi produksi listrik secara terhitung terdapat penyimpangan dan tidak akurat.

Gambar 9 Perbandingan listrik secara terhitung dan produksi listrik aktual

Pada gambar 4.9 terdapat hasil bahwa produksi listrik dari gas engine aktual lebih tinggi darpada potensial produksi listrik secara terhitung.

Gambar 10 Perbandingan potensi produksi listrik (secara terhitung) dan produksi listrik aktual menggunakan diagram scatter


Pada Gambar 10 terlihat hasil bahwa perbandingan potensi produksi listrik (terhitung) dan produksi listrik (aktual) pada garis linear tidak membentuk kemiringan 450 yang berarti plot pada grafik tidak membentuk pola yang ideal dan rumus dengan lsitrik yang di produksi secara aktual dengan potensi produksi listrik secara terhitung tidak terpenuhi atau tidak dapat digunakan dengan efesien. Sesuai dengan produksi listrik aktual dengan potensi produksi listrik secara terhitung terdapat penyimpangan dan tidak akurat.

Tabel 8 Hubungan antara COD dan Produksi Gas

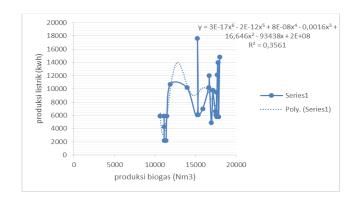
JUMLAH COD mg/L	PRODUKSI GAS (Nm3)
80300	11230
81800	10625
83200	16429
84000	17492
85100	17119
88000	12910
90100	15560

Dari tabel 8 dapat diketahui bahwa jumlah COD antara 80.300 – 90.100 mg/L sementara nilai produksi gas antara 10.625-17.492 Nm3. Pada nilai produksi gas terendah yakni 10.625 Nm3 didapati jumlah COD sebesar 81.800 mg/L, sementara pada nilai produksi gas tertinggi yakni 17.492 jumlah COD sebesar 84.000.

Selanjutnya dari tabel 8 disajikan dalam bentuk grafik pada gambar 4.11. Dari grafik tersebut diperoleh persamaan hubungan antara kadar COD terhadap produksi gas yang sesuai yaitu y = 3E-11x4 - 1E-05x3 + 1,2251x2 - 69240x + 1E+09.

Gambar 11 Hubungan antara COD dan CH₄ data Aktual

Dari gambar 11 didapati nilai koefisien determinasi $R^2 = 0,9397$. Koefisien determinasi menjelaskan bahwa COD mempengaruhi produksi gas. Dari hasil analisis hubungan tersebut menyatakan bahwa produksi gas dipengaruhi kadar COD dari keluaran final effeluent stasiun klarfikasi.


Selanjutnya dari data nilai gas (CH4) aktual pada tabel 8 dianalisa hubungan terhadap produksi Listrik aktual pada tabel 8. Analisa dilakukan dengan mengurutkan data nilai gas (CH4) aktual terkecil ke yang terbesar. Data produksi listrik aktual mengikuti hasil analisis dari nilai gas (CH4). Hasil dapat disajikan pada tabel 9 yang sudah diurutkan.

Tabel 9 Hubungan antara CH₄ dan Listrik pada Data Aktual

		Produksi Gas	
Tanggal	Produksi Gas (Nm3)	Engine (kwh)	
1	10625	5900	
3	11080	5900	
4	11128	4300	
5	11134	2200	
6	11349	2200	
2	11460	5900	
3	11880	10700	
4	13940	10200	
5	15216	6100	
6	15240	17600	
7	15340	6100	
8	15880	7000	
9	16630	10200	
10	16680	12000	
11	16954	4900	
12	17123	9800	
13	17130	9800	
14	17452	6600	
15	17475	6600	
16	17499	6100	
17	17568	6100	
18	17595	9500	
19	17617	5800	
20	17690	12100	
21	17780	14000	
22	17846	5800	
23	17860	5800	
24	17980	14800	
rata-rata	15470	8000	

Dari tabel 9 dapat diketahui bahwa produksi biogas berkisar antara 10.625 – 17.980 Nm3. sementara produksi listrik antara 2.200 – 17.600 kwh Pada kadar produksi biogas terendah yakni 10.625 Nm3 didapati produksi listrik sebesar 5.900 kwh sementara pada produksi biogas tertinggi yakni 17.980 Nm3 kadar kotoran sebesar 8000kwh.

Selanjutnya dari tabel 9 disajikan dalam bentuk grafik pada gambar 12. Dari grafik tersebut diperoleh persamaan hubungan antara produksi listrik terhadap produksi biogas yang sesuai yaitu y = 3E-17x6 - 2E-12x5 + 8E-08x4 - 0,0016x3 + 16,646x2 - 93438x + 2E+08.

Gambar 12 Hubungan antara CH₄ dan Listrik data Aktual

Dari gambar 12 didapati nilai koefisien determinasi $R^2 = 0,3561$. Koefisien determinasi menjelaskan bahwa produksi biogas mempengaruhi produksi listrik pada. Dari hasil analisis hubungan tersebut menyatakan bahwa produksi listrik dipengaruhi produksi biogas.

V. KESIMPULAN

5.1 Kesimpulan

Dari hasil penelitian dan pembahasan maka dapat diambil kesimpulan sebagai berikut:

- 1. Proses konversi limbah cair menjadi biogas diproses melalui beberapa tahapan yaitu fat pit, cooling pound untuk pendinginan limbah cair, vibarating screes memisahkan kotoran, cooling tank untuk pendingan limbah cair, bak feeding, blower, distribusi tank, biogas clean untuk mengurangi kadar H2_S, flare stack untuk pembuangan gas yang lebih atau sisa, dehumidifier untuk mengurangi kadar air, gas engine yaitu mesin yang digunakan untuk mengasilkan listrik dengan bahan bakar biogas.
- 2. Hasil konversi produksi biogas yang diolah dari konversi limbah cair dapat diperoleh rata-rata 15.470 Nm³ dengan jumlah produksi biogas 448.621 Nm³ dan limbah cair atau *Palm Oil Mill Effeluent* (POME) yang diproduksi rata-rata 319.270 ton dengan total limbah cair yang diproduksi yaitu 7.023.934 ton .
- Sedangkan hasil potensi produksi biogas yang diolah dari nilai COD dapat diperoleh rata-rata 21.067 Nm³ dengan total 610.930 Nm³ sedangkan rata-rata kadar COD yaitu 83.968 mg/l.

- 4. Hasil konversi listrik yang diolah dari konversi biogas dapat diperoleh rata-rata 8000 kwh dengan jumlah produksi listrik 224. 000 kwh. Dan hasil perhitungan potensi listrik yang diolah dari perhitungan potensi biogas dapat diperoleh rata-rata 83.322 kwh dengan jumlah potensi listrik 93.017 kwh.
- 5. Pada pengamatan hubungan anatara COD dan gas metana (CH₄) diperoleh bahwa 93% produksi biogas dipengaruhi oleh kadar COD sedangkan hubungan antara CH₄ dan produksi listrik bahwa 35% produksi listrik dipengaruhi oleh gas metana (CH₄)

5.2 Saran

- Pada pada waktu yang akan datang diharapkan dapat melanjutkan penelitian lebih lanjut.
- Gas yang tersisa dapat dimanfaatkan untuk pembangkit listrik atau PLN pada masyarakat.

DAFTAR PUSTAKA

- Anonim. (2011). **Biogas Pembuatan Konstruksi, Operasional Dan Pemeliharaan Instalasinya**. Badan Litbang Pertanian In SinarTani (Issue 3408). Jakarta.
- Ali Akbar, Z.L. 2003. Biological Treatment of Palm Oil Mill Effluent (POME) using an Up-Flow Anaerobic Sludge Fixed Film (UASFF) Bioreactor, thesis for degree of Doctor of Philosophy, Malaysia.
- Abdullah, K., Abul Kohar Irwanto, Nirwan Siregar, Endah Agustina, Armansyah H. Tambunan, M. Yasin, Edy Hartulistyono, Y. Aris Purwanto, 1991. **Energi dan Listrik Pertanian**, JICA-DGHE/IPB Project/ADAET, JTA9a (132). Bogor.
- Budianta, D. 2005. **Potensi limbah cair pabrik kelapa sawit sebagai sumber hara untuk tanaman perkebunan**. Jurnal Dinamika Pertanian 20(3):273-282. Palembang.
- Budiarto, Rachmawan, dkk, 2007. Mengabdi Bersama UMKM, Lembaga Penelitian dan Pengabdian Kepada Masyarakat UGM. Yogyakarta
- Darajeh, N., Idris, A., Truong, P., Aziz, A.A., Bakar, R.A., & Man, H.C. (2014). Phytoremediation Potential of Vetiver System Technology for Improving the Quality of Palm Oil Mill Effluent. Advances in Materials Science and Engineering. Amerika.
- Erhaneli, & Hidayat, A. (2019). **Analisa pembangkit listrik tenaga biogas (pltbg) dengan pemanfaatan palm oil mill effluent**. *Peranan Iptek Menuju Industri Masa Depan (PIMIMD-5)*, 1–7. https://doi.org/10.21063/PIMIMD5.2019.30. Padang.
- Komarayati, S., Gusmailina, T. Nurhayati, B. De Wilde dan S. Vanhille. 1986. **Twophase Liquid State and solid state Fermentation of Water Hyacinth**, Jurnal Penelitian Hasil Hutan, 3(4);28-33.PPPH. Bogor.
- Melisa, & Apriyanto, M. (2020). **Pengolahan Limbah Cair Pabrik Kelapa Sawit** (Studi Kasus pada PT. Tri Bakti Sarimas PKS 2) Mahasiswa Teknologi Pangan Universitas Islam Indragiri. Jurnal Teknologi Pertanian, 9(2), 86–93. smeli476@gmail.com. Riau.
- Naibaho, P.M. 1983. **Peranan Kelapa Sawit dalam Usaha Pengembangan Industri Hasil Pertania**. Bul. Medan
- Rahayu, A. S., Karsiwulan, D., Yuwono, H., Trisnawati, I., Mulyasari, S., Rahardjo,

- S., Hokermin, S., & Paramita, V. (2015). **Buku Panduan Konversi POME Menjadi Biogas Pengembangan Proyek di Indonesia**. In *Winrock International*. https://www.winrock.org/wp-content/uploads/2016/05/CIRCLE-Handbook-INDO-compressed.pdf. Indonesia
- Sasongko, A. (2015). **Pengelolaan Limbah Kelapa Sawit (Elaeis guineensis Jacq.) di Perkebunan Kelapa Sawit**. *Susilawati Supijatno*, 3(2), 203–212. Riau
- Surbakti, B. J., Mardina, V., & Fadhliani. (2020). **Karakteristik Limbah Cair Hasil Pengolahan Sistem Lumpur Aktif** pada Pabrik Kelapa Sawit PTPN II Tanjung Morawa , Kebun Sawit Seberang. *Biologica Samudra*, 2(2), 96. https://ejurnalunsam.id/index.php/jbs/article/download/2307/1918. Medan
- Parinduri, L. (2018). **Analisa pemanfaatan POME untuk sumber pembangkit listrik tenaga biogas di pabrik kelapa sawit**. *Journal of Electrical Technology*, 3(3), 180–183. https://jurnal.uisu.ac.id/index.php/jet/article/view/964. Medan.
- Wiharja, W., Winanti, W. S., Prasetiyadi, P., & Sitomurni, A. I. (2021). **Produksi Biogas dari Limbah Cair Kelapa Sawit dengan Menggunakan Reaktor Unggun Tetap tanpa Proses Pretreatment**. *WIHARJA WIDIATMINI SIH WINANTI PRASETIYADI AMITA INDAH SITOMURNI*, 22(1), 078–084. https://doi.org/10.29122/jtl.v22i1.3250. Jakarta
- Zulkifli, A. (2016). **Analisis Kelayakan Potensi Pembangunan PLTBG POME di Wilayah Perkebunan Sawit**. Pasti, 10(2), 192–207. Jakarta