BAB I. PENDAHULUAN

A. Latar Belakang

Kelapa sawit merupakan salah satu komoditas perkebunan terbesar di Indonesia. Komoditas ini telah tumbuh dengan pesat serta menyumbang pendapatan asli daerah maupun devisa negara yang cukup tinggi pada sektor non migas. Berdasarkan data dalam jurnal Optimalisasi pertumbuhan tanaman kelapa sawit di tanah *Spodosols* (Syarovy, 2015), total luas perkebunan kelapa sawit pada tahun 2014 mencapai 10,9 juta ha dan diperkirakan pada tahun 2015 (BPS Statistik) luas perkebunan tersebut akan terus bertambah menjadi 11,4 juta ha. Artinya, laju perkembangan tersebut mengakibatkan lahan yang memiliki tingkat kesuburan tinggi menjadi semakin terbatas. Hal ini memaksa untuk memanfaatkan lahan-lahan marjinal atau dengan kelas lahan S-3 sampai N yang memiliki beberapa faktor pembatas untuk pengusahaan perkebunan kelapa sawit. Salah satu lahan marginal yang sudah dimanfaatkan untuk perkebunan kelapa sawit saat ini adalah tanah *spodosols*.

Menurut Wiratmoko *et al.*, (2007) *spodosols* ialah tanah yang miskin hara, hal ini bisa ditinjau dari ciri kandungan karbon (C) yg agak rendah (0,11-1,31%) serta agak tinggi (4,62%) di horizon *spodik*. mempunyai kandungan nitrogen (N) rendah hingga relatif rendah (0,10-0,11%), rasio C/N agak rendah (0,10-0,11%) pada lapisan atas dan tinggi di lapisan *spodik* (46,2%). Memiliki fosfor (P) tersedia rendah (1-8 ppm) pada seluruh lapisan. Namun dari segi kimia tanah spodik mengandung unsur kalium dan fosfor yang belum siap untuk diserap oleh tanaman sehingga hal tersebut perlu dibantu dengan proses pemupukan (Sunardi & Sarjono, 2007). Selain produksi yang rendah, pengelolaan yang tidak memenuhi standart juga berdampak terhadap umur ekonomis kelapa sawit yang lebih pendek dari normal sekitar 25 tahun (Adiwiganda, 2002). Secara fisik tanah yang didominasi pasir memiliki pori makro yang banyak, artinya semakin mudah air yang hilang dari tanah.

Kurangnya daya dukung tanah untuk peningkatan produktifitas kelapa sawit khususnya di tanah pasir *spodosols* perlu adanya usaha untuk memperbaiki sifat kimia dan fisika tanah. Salah satunya adalah dengan aplikasi pupuk organik TKKS

Kelapa Sawit (TKKS). Oleh karena itu, kami melakukan percobaan aplikasi TKKS untuk mengetahui dampak perubahan sifat fisika dan kimia tanah serta pengaruh pada produktifitas kelapa sawit di Sungai Tapah Estate (STHE), kecamatan Kendawangan, kabupaten Ketapang, Kalimantan Barat.

B. Permasalahan

Berdasarkan latar belakang masalah di atas, maka rumusan masalah dalam penelitian ini adalah :

- 1. Tanah *spodosols* mempunyai kemampuan menahan air rendah karena sifat fisik tanah khususnya tingkat agregat yg rendah, bahan organik yang rendah yang berakibat pada rendahnya produktivitas kelapa sawit. Oleh karena itu, perlu diteliti pemanfaaatan TKKS sebagai amelioran tanah *spodosols*.
- 2. Penggunaan TKKS sebagai *amelioran* yang diharapkan dapat memperbaiki kemampuan tanah spodosol dalam penyerapan hara/pupuk, sehingga perlu diteliti hubungannya dengan perbaikan nutrisi internal kelapa sawit.

C. Tujuan Penelitian

Berdasarkan perumusan masalah di atas, maka tujuan dalam penelitian ini adalah:

- 1. Menganalisis aplikasi TKKS terhadap sifat sifat fisika dan kimia tanah.
- 1. Mengkaji pengaruh aplikasi TKKS terhadap produktivitas (ton/ha) kelapa sawit di tanah *spodosols*.

D. Manfaat Penelitian

Meningkatkan nilai guna TKKS sebagai produk samping perkebunan kelapa sawit baik sebagai *soil amelioran* maupun untuk sumber hara. Aplikasi TKKS dapat menjadi komponen utama kultur teknis untuk mengatasi kelemahan tanah *spodosols* dalam pengelolaan kelapa sawit.